Advertisement

Nano Research

, Volume 11, Issue 6, pp 3009–3030 | Cite as

Biomimetic approaches toward smart bio-hybrid systems

Review Article

Abstract

Bio-integrated materials and devices can blur the interfaces between living and artificial systems. Microfluidics, bioelectronics, and engineered nanostructures, with close interactions with biology at the cellular or tissue levels, have already yielded a spectrum of new applications. Many new designs emerge, including of organ-on-a-chip systems, biodegradable implants, electroceutical devices, minimally invasive neuro-prosthetic tools, and soft robotics. In this review, we highlight a few recent advances of the fabrication and application of smart bio-hybrid systems, with a particular emphasis on the three-dimensional (3D) bio-integrated devices that mimic the 3D feature of tissue scaffolds. Moreover,neurons integrated with engineered nanostructures for wireless neuromodulation and dynamic neural output are briefly discussed. We also discuss the progress in the construction of cell-enabled soft robotics, where a tight coupling of the synthetic and biological parts is crucial for efficient function. Finally, we summarize the approaches for enhancing bio-integration with biomimetic micro- and nanostructures.

Keywords

bio-integrated device bio-hybrid system biomimetics nano-bio interface 

Notes

Acknowledgements

Z.Q.L. acknowledges support from the National Natural Science Foundation of China (No. 81771974). B.Z.T. acknowledges a primary support from the University of Chicago Materials Research Science and Engineering Center, which is funded by the National Science Foundation under award number DMR-1420709. B.Z.T. also acknowledges support from the National Institutes of Health (No. NIH 1DP2NS101488).

References

  1. [1]
    Hyam, J. A.; Kringelbach, M. L.; Silburn, P. A.; Aziz, T. Z.; Green, A. L. The autonomic effects of deep brain stimulation—a therapeutic opportunity. Nat. Rev. Neurol. 2012, 8, 391–400.CrossRefGoogle Scholar
  2. [2]
    Jackson, A.; Zimmermann, J. B. Neural interfaces for the brain and spinal cord—restoring motor function. Nat. Rev. Neurol. 2012, 8, 690–699.CrossRefGoogle Scholar
  3. [3]
    Birmingham, K.; Gradinaru, V.; Anikeeva, P.; Grill, W. M.; Pikov, V.; McLaughlin, B.; Pasricha, P.; Weber, D.; Ludwig, K.; Famm, K. Bioelectronic medicines: A research roadmap. Nat. Rev. Drug Discov. 2014, 13, 399–400.CrossRefGoogle Scholar
  4. [4]
    Fox, D. The shock tactics set to shake up immunology. Nature 2017, 545, 20–22.CrossRefGoogle Scholar
  5. [5]
    Kozai, T. D. Y.; Jaquins-Gerstl, A. S.; Vazquez, A. L.; Michael, A. C.; Cui, X. T. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 2015, 6, 48–67.CrossRefGoogle Scholar
  6. [6]
    Gunasekera, B.; Saxena, T.; Bellamkonda, R.; Karumbaiah, L. Intracortical recording interfaces: Current challenges to chronic recording function. ACS Chem. Neurosci. 2015, 6, 68–83.CrossRefGoogle Scholar
  7. [7]
    Lacour, S. P.; Courtine, G.; Guck, J. Materials and technologies for soft implantable neuroprostheses. Nat. Rev. Mater. 2016, 1, 16063.CrossRefGoogle Scholar
  8. [8]
    Jeong, J. W.; Shin, G.; Park, S. I.; Yu, K. J.; Xu, L. Z.; Rogers, J. A. Soft materials in neuroengineering for hard problems in neuroscience. Neuron 2015, 86, 175–186.CrossRefGoogle Scholar
  9. [9]
    Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.CrossRefGoogle Scholar
  10. [10]
    Green, R.; Abidian, M. R. Conducting polymers for neural prosthetic and neural interface applications. Adv. Mater. 2015, 27, 7620–7637.CrossRefGoogle Scholar
  11. [11]
    Tian, B. Z.; Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 2013, 6, 31–51.CrossRefGoogle Scholar
  12. [12]
    Duan, X. J.; Fu, T. M.; Liu, J.; Lieber, C. M. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues. Nano Today 2013, 8, 351–373.CrossRefGoogle Scholar
  13. [13]
    Zimmerman, J.; Parameswaran, R.; Tian, B. Z. Nanoscale semiconductor devices as new biomaterials. Biomater. Sci. 2014, 2, 619–626.CrossRefGoogle Scholar
  14. [14]
    Cohen-Karni, T.; Langer, R.; Kohane, D. S. The smartest materials: The future of nanoelectronics in medicine. ACS Nano 2012, 6, 6541–6545.CrossRefGoogle Scholar
  15. [15]
    Esch, E. W.; Bahinski, A.; Huh, D. Organs-on-chips at the frontiers of drug discovery. Nat. Rev. Drug Discov. 2015, 14, 248–260.CrossRefGoogle Scholar
  16. [16]
    Guan, A.; Hamilton, P.; Wang, Y.; Gorbet, M.; Li, Z. Y.; Phillips, K. S. Medical devices on chips. Nat. Biomed. Eng. 2017, 1, 0045.CrossRefGoogle Scholar
  17. [17]
    Feinberg, A. W. Biological soft robotics. Annu. Rev. Biomed. Eng. 2015, 17, 243–265.CrossRefGoogle Scholar
  18. [18]
    Patino, T.; Mestre, R.; Sánchez, S. Miniaturized soft bio-hybrid robotics: A step forward into healthcare applications. Lab Chip 2016, 16, 3626–3630.CrossRefGoogle Scholar
  19. [19]
    Dvir, T.; Timko, B. P.; Kohane, D. S.; Langer, R. Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 2011, 6, 13–22.CrossRefGoogle Scholar
  20. [20]
    Bajaj, P.; Schweller, R. M.; Khademhosseini, A.; West, J. L.; Bashir, R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu. Rev. Biomed. Eng. 2014, 16, 247–276.CrossRefGoogle Scholar
  21. [21]
    Tian, B. Z.; Liu, J.; Dvir, T.; Jin, L. H.; Tsui, J. H.; Qing, Q.; Suo, Z. G.; Langer, R.; Kohane, D. S.; Lieber, C. M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 2012, 11, 986–994.CrossRefGoogle Scholar
  22. [22]
    Dai, X. C.; Zhou, W.; Gao, T.; Liu, J.; Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues. Nat. Nanotechnol. 2016, 11, 776–782.CrossRefGoogle Scholar
  23. [23]
    Liu, J.; Xie, C.; Dai, X.; Jin, L.; Zhou, W.; Lieber, C. M. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials. Proc. Natl. Acad. Sci. USA 2013, 110, 6694–6699.CrossRefGoogle Scholar
  24. [24]
    Feiner, R.; Engel, L.; Fleischer, S.; Malki, M.; Gal, I.; Shapira, A.; Shacham-Diamand, Y.; Dvir, T. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 2016, 15, 679–685.CrossRefGoogle Scholar
  25. [25]
    Zhang, Y. H.; Zhang, F.; Yan, Z.; Ma, Q.; Li, X. L.; Huang, Y. G.; Rogers, J. A. Printing, folding and assembly methods for forming 3D mesostructures in advanced materials. Nat. Rev. Mater. 2017, 2, 17019.CrossRefGoogle Scholar
  26. [26]
    Murphy, S. V.; Atala, A. 3D bioprinting of tissues and organs. Nat. Biotechnol. 2014, 32, 773–785.CrossRefGoogle Scholar
  27. [27]
    Do, A. V.; Khorsand, B.; Geary, S. M.; Salem, A. K. 3D printing of scaffolds for tissue regeneration applications. Adv. Healthc. Mater. 2015, 4, 1742–1762.CrossRefGoogle Scholar
  28. [28]
    Kong, Y. L.; Gupta, M. K.; Johnson, B. N.; McAlpine, M. C. 3D printed bionic nanodevices. Nano Today 2016, 11, 330–350.CrossRefGoogle Scholar
  29. [29]
    Shin, S. R.; Farzad, R.; Tamayol, A.; Manoharan, V.; Mostafalu, P.; Zhang, Y. S.; Akbari, M.; Jung, S. M.; Kim, D.; Comotto, M. et al. A bioactive carbon nanotube-based ink for printing 2D and 3D flexible electronics. Adv. Mater. 2016, 28, 3280–3289.CrossRefGoogle Scholar
  30. [30]
    Lind, J. U.; Busbee, T. A.; Valentine, A. D.; Pasqualini, F. S.; Yuan, H. Y.; Yadid, M.; Park, S. J.; Kotikian, A.; Nesmith, A. P.; Campbell, P. H. et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat. Mater. 2017, 16, 303–308.CrossRefGoogle Scholar
  31. [31]
    Hwang, S. W.; Tao, H.; Kim, D. H.; Cheng, H. Y.; Song, J. K.; Rill, E.; Brenckle, M. A.; Panilaitis, B.; Won, S. M.; Kim, Y. S. et al. A physically transient form of silicon electronics. Science 2012, 337, 1640–1644.CrossRefGoogle Scholar
  32. [32]
    Kang, S. K.; Murphy, R. K. J.; Hwang, S. W.; Lee, S. M.; Harburg, D. V.; Krueger, N. A.; Shin, J.; Gamble, P.; Cheng, H. Y.; Yu, S. et al. Bioresorbable silicon electronic sensors for the brain. Nature 2016, 530, 71–76.CrossRefGoogle Scholar
  33. [33]
    Yu, K. J.; Kuzum, D.; Hwang, S. W.; Kim, B. H.; Juul, H.; Kim, N. H.; Won, S. M.; Chiang, K.; Trumpis, M.; Richardson, A. G. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 2016, 15, 782–791.CrossRefGoogle Scholar
  34. [34]
    Zhang, B. Y.; Montgomery, M.; Chamberlain, M. D.; Ogawa, S.; Korolj, A.; Pahnke, A.; Wells, L. A.; Massé, S.; Kim, J.; Reis, L. et al. Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat. Mater. 2016, 15, 669–678.CrossRefGoogle Scholar
  35. [35]
    Fleischer, S.; Shapira, A.; Feiner, R.; Dvir, T. Modular assembly of thick multifunctional cardiac patches. Proc. Natl. Acad. Sci. USA 2017, 114, 1898–1903.CrossRefGoogle Scholar
  36. [36]
    Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 2008, 10, 275–309.CrossRefGoogle Scholar
  37. [37]
    Liu, J.; Fu, T. M.; Cheng, Z. G.; Hong, G. S.; Zhou, T.; Jin, L. H.; Duvvuri, M.; Jiang, Z.; Kruskal, P.; Xie, C. et al. Syringe-injectable electronics. Nat. Nanotechnol. 2015, 10, 629–636.CrossRefGoogle Scholar
  38. [38]
    Xie, C.; Liu, J.; Fu, T. M.; Dai, X. C.; Zhou, W.; Lieber, C. M. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 2015, 14, 1286–1292.CrossRefGoogle Scholar
  39. [39]
    Luan, L.; Wei, X. L.; Zhao, Z. T.; Siegel, J. J.; Potnis, O.; Tuppen, C. A.; Lin, S. Q.; Kazmi, S.; Fowler, R. A.; Holloway, S. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 2017, 3, e1601966.CrossRefGoogle Scholar
  40. [40]
    Chen, R.; Canales, A.; Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2017, 2, 16093.CrossRefGoogle Scholar
  41. [41]
    Tee, B. C. K.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H. L. et al. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313–316.CrossRefGoogle Scholar
  42. [42]
    Kim, C. K.; Adhikari, A.; Deisseroth, K. Integration of optogenetics with complementary methodologies in systems neuroscience. Nat. Rev. Neurosci. 2017, 18, 222–235.CrossRefGoogle Scholar
  43. [43]
    Rivnay, J.; Wang, H. L.; Fenno, L.; Deisseroth, K.; Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 2017, 3, e1601649.CrossRefGoogle Scholar
  44. [44]
    Carvalho-de-Souza, J. L.; Treger, J. S.; Dang, B.; Kent, S. B. H.; Pepperberg, D. R.; Bezanilla, F. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 2015, 86, 207–217.CrossRefGoogle Scholar
  45. [45]
    Eom, K.; Kim, J.; Choi, J. M.; Kang, T.; Chang, J. W.; Byun, K. M.; Jun, S. B.; Kim, S. J. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 2014, 10, 3853–3857.CrossRefGoogle Scholar
  46. [46]
    Yoo, S.; Hong, S.; Choi, Y.; Park, J. H.; Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 2014, 8, 8040–8049.CrossRefGoogle Scholar
  47. [47]
    Lyu, Y.; Xie, C.; Chechetka, S. A.; Miyako, E.; Pu, K. Semiconducting polymer nanobioconjugates for targeted photothermal activation of neurons. J. Am. Chem. Soc. 2016, 138, 9049–9052.CrossRefGoogle Scholar
  48. [48]
    Jiang, Y. W.; Carvalho-de-Souza, J. L.; Wong, R. C. S.; Luo, Z. Q.; Isheim, D.; Zuo, X. B.; Nicholls, A. W.; Jung, I. W.; Yue, J. P.; Liu, D. J. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 2016, 15, 1023–1030.CrossRefGoogle Scholar
  49. [49]
    Huang, H.; Delikanli, S.; Zeng, H.; Ferkey, D. M.; Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nat. Nanotechnol. 2010, 5, 602–606.CrossRefGoogle Scholar
  50. [50]
    Stanley, S. A.; Gagner, J. E.; Damanpour, S.; Yoshida, M.; Dordick, J. S.; Friedman, J. M. Radio-wave heating of iron oxide nanoparticles can regulate plasma glucose in mice. Science 2012, 336, 604–608.CrossRefGoogle Scholar
  51. [51]
    Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P. Wireless magnetothermal deep brain stimulation. Science 2015, 347, 1477–1480.CrossRefGoogle Scholar
  52. [52]
    Munshi, R.; Qadri, S. M.; Zhang, Q.; Castellanos Rubio, I.; Del Pino, P.; Pralle, A. Magnetothermal genetic deep brain stimulation of motor behaviors in awake, freely moving mice. eLife 2017, 6, e27069.CrossRefGoogle Scholar
  53. [53]
    Rus, D.; Tolley, M. T. Design, fabrication and control of soft robots. Nature 2015, 521, 467–475.CrossRefGoogle Scholar
  54. [54]
    Feinberg, A. W.; Feigel, A.; Shevkoplyas, S. S.; Sheehy, S.; Whitesides, G. M.; Parker, K. K. Muscular thin films for building actuators and powering devices. Science 2007, 317, 1366–1370.CrossRefGoogle Scholar
  55. [55]
    Nawroth, J. C.; Lee, H.; Feinberg, A. W.; Ripplinger, C. M.; McCain, M. L.; Grosberg, A.; Dabiri, J. O.; Parker, K. K. A tissue-engineered jellyfish with biomimetic propulsion. Nat. Biotechnol. 2012, 30, 792–797.CrossRefGoogle Scholar
  56. [56]
    Cvetkovic, C.; Raman, R.; Chan, V.; Williams, B. J.; Tolish, M.; Bajaj, P.; Sakar, M. S.; Asada, H. H.; Saif, M. T. A.; Bashir, R. Three-dimensionally printed biological machines powered by skeletal muscle. Proc. Natl. Acad. Sci. USA 2014, 111, 10125–10130.CrossRefGoogle Scholar
  57. [57]
    Raman, R.; Cvetkovic, C.; Bashir, R. A modular approach to the design, fabrication, and characterization of muscle-powered biological machines. Nat. Protoc. 2017, 12, 519–533.CrossRefGoogle Scholar
  58. [58]
    Cvetkovic, C.; Rich, M. H.; Raman, R.; Kong, H.; Bashir, R. A 3D-printed platform for modular neuromuscular motor units. Microsyst. Nanoeng. 2017, 3, 17015.CrossRefGoogle Scholar
  59. [59]
    Shin, S. R.; Shin, C.; Memic, A.; Shadmehr, S.; Miscuglio, M.; Jung, H. Y.; Jung, S. M.; Bae, H.; Khademhosseini, A.; Tang, X. S. et al. Aligned carbon nanotube-based flexible gel substrates for engineering biohybrid tissue actuators. Adv. Funct. Mater. 2015, 25, 4486–4495.CrossRefGoogle Scholar
  60. [60]
    Raman, R.; Cvetkovic, C.; Uzel, S. G. M.; Platt, R. J.; Sengupta, P.; Kamm, R. D.; Bashir, R. Optogenetic skeletal muscle- powered adaptive biological machines. Proc. Natl. Acad. Sci. USA 2016, 113, 3497–3502.CrossRefGoogle Scholar
  61. [61]
    Park, S. J.; Gazzola, M.; Park, K. S.; Park, S.; Di Santo, V.; Blevins, E. L.; Lind, J. U.; Campbell, P. H.; Dauth, S.; Capulli, A. K. et al. Phototactic guidance of a tissue-engineered soft-robotic ray. Science 2016, 353, 158–162.CrossRefGoogle Scholar
  62. [62]
    Phan, L.; Kautz, R.; Leung, E. M.; Naughton, K. L.; Van Dyke, Y.; Gorodetsky, A. A. Dynamic materials inspired by cephalopods. Chem. Mater. 2016, 28, 6804–6816.CrossRefGoogle Scholar
  63. [63]
    Pikul, J. H.; Li, S.; Bai, H.; Hanlon, R. T.; Cohen, I.; Shepherd, R. F. Stretchable surfaces with programmable 3D texture morphing for synthetic camouflaging skins. Science 2017, 358, 210–214.CrossRefGoogle Scholar
  64. [64]
    Yu, C. J.; Li, Y. H.; Zhang, X.; Huang, X.; Malyarchuk, V.; Wang, S. D.; Shi, Y.; Gao, L.; Su, Y. W.; Zhang, Y. H. et al. Adaptive optoelectronic camouflage systems with designs inspired by cephalopod skins. Proc. Natl. Acad. Sci. USA 2014, 111, 12998–13003.CrossRefGoogle Scholar
  65. [65]
    Li, J.; Celiz, A. D.; Yang, J.; Yang, Q.; Wamala, I.; Whyte, W.; Seo, B. R.; Vasilyev, N. V.; Vlassak, J. J.; Suo, Z. et al. Tough adhesives for diverse wet surfaces. Science 2017, 357, 378–381.CrossRefGoogle Scholar
  66. [66]
    Zhao, Q.; Lee, D. W.; Ahn, B. K.; Seo, S.; Kaufman, Y.; Israelachvili, J. N.; Waite, J. H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 2016, 15, 407–412.CrossRefGoogle Scholar
  67. [67]
    Gebbie, M. A.; Wei, W.; Schrader, A. M.; Cristiani, T. R.; Dobbs, H. A.; Idso, M.; Chmelka, B. F.; Waite, J. H.; Israelachvili, J. N. Tuning underwater adhesion with cation-π interactions. Nat. Chem. 2017, 9, 473–479.CrossRefGoogle Scholar
  68. [68]
    Iturri, J.; Xue, L. J.; Kappl, M.; García-Fernández, L.; Barnes, W. J. P.; Butt, H. J.; del Campo, A. Torrent frog-inspired adhesives: Attachment to flooded surfaces. Adv. Funct. Mater. 2015, 25, 1499–1505.CrossRefGoogle Scholar
  69. [69]
    Drotlef, D. M.; Stepien, L.; Kappl, M.; Barnes, W. J. P.; Butt, H. J.; del Campo, A. Insights into the adhesive mechanisms of tree frogs using artificial mimics. Adv. Funct. Mater. 2013, 23, 1137–1146.CrossRefGoogle Scholar
  70. [70]
    Xue, L. J.; Sanz, B.; Luo, A. Y.; Turner, K. T.; Wang, X.; Tan, D.; Zhang, R.; Du, H.; Steinhart, M.; Mijangos, C. et al. Hybrid surface patterns mimicking the design of the adhesive toe pad of tree frog. ACS Nano 2017, 11, 9711–9719.CrossRefGoogle Scholar
  71. [71]
    Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341.CrossRefGoogle Scholar
  72. [72]
    Mahdavi, A.; Ferreira, L.; Sundback, C.; Nichol, J. W.; Chan, E. P.; Carter, D. J. D.; Bettinger, C. J.; Patanavanich, S.; Chignozha, L.; Ben-Joseph, E. et al. A biodegradable and biocompatible gecko-inspired tissue adhesive. Proc. Natl. Acad. Sci. USA 2008, 105, 2307–2312.CrossRefGoogle Scholar
  73. [73]
    Frost, S. J.; Mawad, D.; Higgins, M. J.; Ruprai, H.; Kuchel, R.; Tilley, R. D.; Myers, S.; Hook, J. M.; Lauto, A. Gecko-inspired chitosan adhesive for tissue repair. NPG Asia Mater. 2016, 8, e280.CrossRefGoogle Scholar
  74. [74]
    Luo, Z. Q.; Jiang, Y. W.; Myers, B. D.; Isheim, D.; Wu, J. S.; Zimmerman, J. F.; Wang, Z. G.; Li, Q. Q.; Wang, Y. C.; Chen, X. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 2015, 348, 1451–1455.CrossRefGoogle Scholar
  75. [75]
    Cho, W. K.; Ankrum, J. A.; Guo, D. G.; Chester, S. A.; Yang, S. Y.; Kashyap, A.; Campbell, G. A.; Wood, R. J.; Rijal, R. K.; Karnik, R. et al. Microstructured barbs on the North American porcupine quill enable easy tissue penetration and difficult removal. Proc. Natl. Acad. Sci. USA 2012, 109, 21289–21294.CrossRefGoogle Scholar
  76. [76]
    Yang, S. Y.; O’Cearbhaill, E. D.; Sisk, G. C.; Park, K. M.; Cho, W. K.; Villiger, M.; Bouma, B. E.; Pomahac, B.; Karp, J. M. A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat. Commun. 2013, 4, 1702.CrossRefGoogle Scholar
  77. [77]
    Yi, J.; Wang, Y. C.; Jiang, Y. W.; Jung, I. W.; Liu, W. J.; De Andrade, V.; Xu, R. Q.; Parameswaran, R.; Peters, I. R.; Divan, R. et al. 3D calcite heterostructures for dynamic and deformable mineralized matrices. Nat. Commun. 2017, 8, 509.CrossRefGoogle Scholar
  78. [78]
    Chen, Y. C.; Yang, H. T. Octopus-inspired assembly of nanosucker arrays for dry/wet adhesion. ACS Nano 2017, 11, 5332–5338.CrossRefGoogle Scholar
  79. [79]
    Lee, H.; Um, D. S.; Lee, Y.; Lim, S.; Kim, H. J.; Ko, H. Octopus-inspired smart adhesive pads for transfer printing of semiconducting nanomembranes. Adv. Mater. 2016, 28, 7457–7465.CrossRefGoogle Scholar
  80. [80]
    Baik, S.; Kim, D. W.; Park, Y.; Lee, T. J.; Ho Bhang, S.; Pang, C. A wet-tolerant adhesive patch inspired by protuberances in suction cups of octopi. Nature 2017, 546, 396–400.CrossRefGoogle Scholar
  81. [81]
    Pan, F.; Gao, S.; Chen, C.; Song, C.; Zeng, F. Recent progress in resistive random access memories: Materials, switching mechanisms, and performance. Mater. Sci. Eng. R-Rep. 2014, 83, 1–59.CrossRefGoogle Scholar
  82. [82]
    Sheridan, P. M.; Cai, F. X.; Du, C.; Ma, W.; Zhang, Z. Y.; Lu, W. D. Sparse coding with memristor networks. Nat. Nanotechnol. 2017, 12, 784–789.CrossRefGoogle Scholar
  83. [83]
    van de Burgt, Y.; Lubberman, E.; Fuller, E. J.; Keene, S. T.; Faria, G. C.; Agarwal, S.; Marinella, M. J.; Alec Talin, A.; Salleo, A. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 2017, 16, 414–418.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of ChemistryThe University of ChicagoChicagoUSA
  3. 3.The James Franck InstituteThe University of ChicagoChicagoUSA
  4. 4.The Institute for Biophysical DynamicsThe University of ChicagoChicagoUSA

Personalised recommendations