Strengthening nanocomposite magnetism through microemulsion synthesis

  • Yijun Xie
  • Alexandre H. Vincent
  • Haeun Chang
  • Jeffrey D. Rinehart
Research Article


The magnetic strength and versatility of heterostructures generated via a simple microemulsion cluster-formation technique is demonstrated. This approach allows optimization of individual component magnetic nanoparticles prior to heterostructuring, expediting the discovery and optimization of hybrid magnetic materials. The efficacy of this method is validated through a magnetic study of nanoparticle clusters combining antiferromagnetic CoO and superparamagnetic CoFe2O4 nanoparticles with tunable particle ratio and size. An enhancement of coercivity compared with pure CoFe2O4 nanoparticles indicates that close interparticle contacts are achieved. Upon annealing, an exchange bias field of 0.32 T was observed—over twice that achieved in any other colloidally-synthesized system. Additionally, the unique microstructure is defined during cluster formation and thus protects magnetic coercivity during the annealing process. Overall, this work demonstrates a general approach for quickly exploring magnetic parameter space, designing interparticle functionality, and working towards the construction of high-value bulk magnets with low materials and processing cost.


nanoparticle cluster microemulsion exchange bias exchange interaction coercivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors acknowledge generous support from the Office of Naval Research Young Investigator Award N00014-16-1-2917. The authors also thank National Center for Microscopy and Imaging Research (NCMIR) at UCSD for TEM characterization.

Supplementary material

12274_2018_2000_MOESM1_ESM.pdf (2.4 mb)
Microemulsion synthesis of nanocomposites with enhanced magnetic properties


  1. [1]
    Brown, D.; Ma, B.-M.; Chen, Z. M. Developments in the processing and properties of NdFeB-type permanent magnets.J. Magn. Magn. Mater. 2002, 248, 432–440.CrossRefGoogle Scholar
  2. [2]
    Woodcock, T. G.; Zhang, Y.; Hrkac, G.; Ciuta, G.; Dempsey, N. M.; Schrefl, T.; Gutfleisch, O.; Givord, D. Understanding the microstructure and coercivity of high performance NdFeB-based magnets. Scripta Mater. 2012, 67, 536–541.CrossRefGoogle Scholar
  3. [3]
    Fischer, R.; Schrefl, T.; Kronmüller, H.; Fidler, J. Grain-size dependence of remanence and coercive field of isotropic nanocrystalline composite permanent magnets. J. Magn. Magn. Mater. 1996, 153, 35–49.CrossRefGoogle Scholar
  4. [4]
    Leighton, C.; Nogués, J.; Jönsson-Åkerman, B. J.; Schuller, I. K. Coercivity enhancement in exchange biased systems driven by interfacial magnetic frustration. Phys. Rev. Lett. 2000, 84, 3466–3469.CrossRefGoogle Scholar
  5. [5]
    Estrader, M.; López-Ortega, A.; Estradé, S.; Golosovsky, I. V.; Salazar-Alvarez, G.; Vasilakaki, M.; Trohidou, K. N.; Varela, M.; Stanley, D. C.; Sinko, M. et al. Robust antiferromagnetic coupling in hard-soft bi-magnetic core/shell nanoparticles. Nat. Commun. 2013, 4, 2960.CrossRefGoogle Scholar
  6. [6]
    Goll, D.; Seeger, M.; Kronmüller, H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets. J. Magn. Magn. Mater. 1998, 185, 49–60.CrossRefGoogle Scholar
  7. [7]
    Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.CrossRefGoogle Scholar
  8. [8]
    Skumryev, V.; Stoyanov, S.; Zhang, Y.; Hadjipanayis, G.; Givord, D.; Nogués, J. Beating the superparamagnetic limit with exchange bias. Nature 2003, 423, 850–853.CrossRefGoogle Scholar
  9. [9]
    Nogués, J.; Sort, J.; Langlais, V.; Skumryev, V.; Suriñach, S.; Muñoz, J.; Baró, M. D. Exchange bias in nanostructures. Phys. Rep. 2005, 422, 65–117.CrossRefGoogle Scholar
  10. [10]
    Nogués, J.; Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 1999, 192, 203–232.CrossRefGoogle Scholar
  11. [11]
    Kremenović, A.; Jančar, B.; Ristić, M.; Vučinić-Vasić, M.; Rogan, J.; Pačevski, A.; Antić, B. Exchange-bias and grainsurface relaxations in nanostructured NiO/Ni induced by a particle size reduction. J. Phys. Chem. C 2012, 116, 4356–4364.CrossRefGoogle Scholar
  12. [12]
    Berkowitz, A. E.; Hansen, M. F.; Parker, F. T.; Vecchio, K. S.; Spada, F. E.; Lavernia, E. J.; Rodriguez, R. Amorphous soft magnetic particles produced by spark erosion. J. Magn. Magn. Mater. 2003, 254–255, 1–6.CrossRefGoogle Scholar
  13. [13]
    Rama Rao, N. V.; Gopalan, R.; Raja, M. M.; Chandrasekaran, V.; Chakravarty, D.; Sundaresan, R.; Ranganathan, R.; Hono, K. Structural and magnetic studies on spark plasma sintered SmCo5/Fe bulk nanocomposite magnets. J. Magn. Magn. Mater. 2007, 312, 252–257.CrossRefGoogle Scholar
  14. [14]
    Balasubramanian, B.; Das, B.; Skomski, R.; Zhang, W. Y.; Sellmyer, D. J. Novel nanostructured rare-earth-free magnetic materials with high energy products. Adv. Mater. 2013, 25, 6090–6093.CrossRefGoogle Scholar
  15. [15]
    Mendoza-Suárez, G.; Matutes-Aquino, J. A.; Escalante-García, J. I.; Mancha-Molinar, H.; Ríos-Jara, D.; Johal, K. K. Magnetic properties and microstructure of Ba-ferrite powders prepared by ball milling. J. Magn. Magn. Mater. 2001, 223, 55–62.CrossRefGoogle Scholar
  16. [16]
    Masala, O.; Seshadri, R. Spinel ferrite/MnO core/shell nanoparticles: Chemical synthesis of all-oxide exchange biased architectures. J. Am. Chem. Soc. 2005, 127, 9354–9355.CrossRefGoogle Scholar
  17. [17]
    Zeng, H.; Sun, S. H.; Li, J.; Wang, Z. L.; Liu, J. P. Tailoring magnetic properties of core⁄shell nanoparticles. Appl. Phys. Lett. 2004, 85, 792–794.CrossRefGoogle Scholar
  18. [18]
    Wang, L. Y.; Wang, X.; Luo, J.; Wanjala, B. N.; Wang, C. M.; Chernova, N. A.; Engelhard, M. H.; Liu, Y.; Bae, I.-T.; Zhong, C.-J. Core−shell-structured magnetic ternary nanocubes. J. Am. Chem. Soc. 2010, 132, 17686–17689.CrossRefGoogle Scholar
  19. [19]
    López-Ortega, A.; Tobia, D.; Winkler, E.; Golosovsky, I. V.; Salazar-Alvarez, G.; Estradé, S.; Estrader, M.; Sort, J.; González, M. A.; Suriñach, S. et al. Size-dependent passivation shell and magnetic properties in antiferromagnetic/ferrimagnetic core/shell MnO nanoparticles. J. Am. Chem. Soc. 2010, 132, 9398–9407.CrossRefGoogle Scholar
  20. [20]
    Lima, E., Jr.; Winkler, E. L.; Tobia, D.; Troiani, H. E.; Zysler, R. D.; Agostinelli, E.; Fiorani, D. Bimagnetic CoO core/CoFe2O4 shell nanoparticles: Synthesis and magnetic properties. Chem. Mater. 2012, 24, 512–516.CrossRefGoogle Scholar
  21. [21]
    Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 6650–6653.CrossRefGoogle Scholar
  22. [22]
    Qiu, P. H.; Jensen, C.; Charity, N.; Towner, R.; Mao, C. B. Oil phase evaporation-induced self-assembly of hydrophobic nanoparticles into spherical clusters with controlled surface chemistry in an oil-in-water dispersion and comparison of behaviors of individual and clustered iron oxide nanoparticles. J. Am. Chem. Soc. 2010, 132, 17724–17732.CrossRefGoogle Scholar
  23. [23]
    Lu, Z. D.; Ye, M. M.; Li, N.; Zhong, W. W.; Yin, Y. D. Self-assembled TiO2 nanocrystal clusters for selective enrichment of intact phosphorylated proteins. Angew. Chem., Int. Ed. 2010, 122, 1906–1910.CrossRefGoogle Scholar
  24. [24]
    Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q. et al. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem., Int. Ed. 2011, 50, 3725–3729.CrossRefGoogle Scholar
  25. [25]
    Liu, Y. Y.; Zhang, Y. X.; Ding, H. L.; Xu, S. C.; Li, M.; Kong, F. Y.; Luo, Y. Y.; Li, G. H. Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles: Their synthesis and pronounced SERS and catalytic properties. J. Mater. Chem. A 2013, 1, 3362–3371.CrossRefGoogle Scholar
  26. [26]
    Xiao, M.; Hu, Z. Y.; Wang, Z.; Li, Y. W.; Tormo, A. D.; Le Thomas, N.; Wang, B. X.; Gianneschi, N. C.; Shawkey, M. D.; Dhinojwala, A. Bioinspired bright noniridescent photonic melanin supraballs. Sci. Adv. 2017, 3, e1701151.CrossRefGoogle Scholar
  27. [27]
    Lavorato, G. C.; Lima, E., Jr.; Tobia, D.; Fiorani, D.; Troiani, H. E.; Zysler, R. D.; Winkler, E. L. Size effects in bimagnetic CoO/CoFe2O4 core/shell nanoparticles. Nanotechnology 2014, 25, 355704.CrossRefGoogle Scholar
  28. [28]
    Tüysüz, H.; Salabaş, E. L.; Bill, E.; Bongard, H.; Spliethoff, B.; Lehmann, C. W.; Schüth, F. Synthesis of hard magnetic ordered mesoporous Co3O4/CoFe2O4 nanocomposites. Chem. Mater. 2012, 24, 2493–2500.CrossRefGoogle Scholar
  29. [29]
    Zhang, B. B.; Xu, J. C.; Wang, P. F.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T. et al. Interfaces exchange bias and magnetic properties of ordered CoFe2O4/Co3O4 nanocomposites. Appl. Surf. Sci. 2015, 355, 531–535.CrossRefGoogle Scholar
  30. [30]
    Fan, S.; Wang, W.; Ke, H.; Rao, J.-C.; Zhou, Y. Bimagnetic urchin-like Co3O4/CoFe2O4 nanocomposites: Synthesis and magnetic properties. RSC Adv. 2016, 6, 97055–97062.CrossRefGoogle Scholar
  31. [31]
    Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.CrossRefGoogle Scholar
  32. [32]
    López-Ortega, A.; Lottini, E.; de Julián Fernández, C.; Sangregorio, C. Exploring the magnetic properties of cobaltferrite nanoparticles for the development of a rare-earth-free permanent magnet. Chem. Mater. 2015, 27, 4048–4056.CrossRefGoogle Scholar
  33. [33]
    Seo, W. S.; Shim, J. H.; Oh, S. J.; Lee, E. K.; Hur, N. H.; Park, J. T. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J. Am. Chem. Soc. 2005, 127, 6188–6189.CrossRefGoogle Scholar
  34. [34]
    Zhang, H.-T.; Chen, X.-H. Controlled synthesis and anomalous magnetic properties of relatively monodisperse CoO nanocrystals. Nanotechnology 2005, 16, 2288–2294.CrossRefGoogle Scholar
  35. [35]
    Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment. ACS Nano 2016, 10, 2436–2446.CrossRefGoogle Scholar
  36. [36]
    Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016, 116, 5338–5431.CrossRefGoogle Scholar
  37. [37]
    Park, J.; Porter, M. D.; Granger, M. C. Colloidally assembled zinc ferrite magnetic beads: Superparamagnetic labels with high magnetic moments for mr sensors. ACS Appl. Mater. Interfaces 2017, 9, 19569–19577.CrossRefGoogle Scholar
  38. [38]
    Schuller, I. K.; Morales, R.; Batlle, X.; Nowak, U.; Güntherodt, G. Role of the antiferromagnetic bulk spins in exchange bias. J. Magn. Magn. Mater. 2016, 416, 2–9.CrossRefGoogle Scholar
  39. [39]
    Herzer, G. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 1990, 26, 1397–1402.CrossRefGoogle Scholar
  40. [40]
    Lavorato, G. C.; Peddis, D.; Lima, E., Jr.; Troiani, H. E.; Agostinelli, E.; Fiorani, D.; Zysler, R. D.; Winkler, E. L. Magnetic interactions and energy barrier enhancement in core/shell bimagnetic nanoparticles. J. Phys. Chem. C 2015, 119, 15755–15762.CrossRefGoogle Scholar
  41. [41]
    Debnath, B.; Bansal, A.; Salunke, H. G.; Sadhu, A.; Bhattacharyya, S. Enhancement of magnetization through interface exchange interactions of confined NiO nanoparticles within the mesopores of CoFe2O4. J. Phys. Chem. C 2016, 120, 5523–5533.CrossRefGoogle Scholar
  42. [42]
    Rinaldi-Montes, N.; Gorria, P.; Martínez-Blanco, D.; Fuertes, A. B.; Barquín, L. F.; Fernández, J. R.; de Pedro, I.; Fdez-Gubieda, M. L.; Alonso, J.; Olivi, L. et al. Interplay between microstructure and magnetism in NiO nanoparticles: Breakdown of the antiferromagnetic order. Nanoscale 2014, 6, 457–465.CrossRefGoogle Scholar
  43. [43]
    Lavorato, G. C.; Lima, E., Jr.; Troiani, H. E.; Zysler, R. D.; Winkler, E. L. Tuning the coercivity and exchange bias by controlling the interface coupling in bimagnetic core/shell nanoparticles. Nanoscale 2017, 9, 10240–10247.CrossRefGoogle Scholar
  44. [44]
    Balasubramanian, B.; Mukherjee, P.; Skomski, R.; Manchanda, P.; Das, B.; Sellmyer, D. J. Magnetic nanostructuring and overcoming brown's paradox to realize extraordinary high-temperature energy products. Sci. Rep. 2014, 4, 6265.CrossRefGoogle Scholar
  45. [45]
    Brown, W. F., Jr. Virtues and weaknesses of the domain concept. Rev. Mod. Phys. 1945, 17, 15–19.CrossRefGoogle Scholar
  46. [46]
    Kneller, E. F.; Hawig, R. The exchange-spring magnet: A new material principle for permanent magnets. IEEE Trans. Magn. 1991, 27, 3588–3560.CrossRefGoogle Scholar
  47. [47]
    Shtrikman, S.; Treves, D. Micromagnctics. In Magnetism; Rado, G. T.; Suhl, H., Eds.; Academic Press: New York, 1963; pp 271–350.Google Scholar
  48. [48]
    Wu, M.; Zhang, D.; Zeng, Y. Y.; Wu, L. J.; Liu, X. L.; Liu, J. F. Nanocluster of superparamagnetic iron oxide nanoparticles coated with poly (dopamine) for magnetic field-targeting, highly sensitive MRI and photothermal cancer therapy. Nanotechnology 2015, 26, 115102.CrossRefGoogle Scholar
  49. [49]
    Peddis, D.; Orrù, F.; Ardu, A.; Cannas, C.; Musinu, A.; Piccaluga, G. Interparticle interactions and magnetic anisotropy in cobalt ferrite nanoparticles: Influence of molecular coating. Chem. Mater. 2012, 24, 1062–1071.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yijun Xie
    • 1
    • 2
  • Alexandre H. Vincent
    • 2
  • Haeun Chang
    • 2
  • Jeffrey D. Rinehart
    • 1
    • 2
  1. 1.Materials Science and Engineering ProgramUniversity of California, San DiegoLa JollaUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of California, San DiegoLa JollaUSA

Personalised recommendations