Advertisement

Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy

  • Lun Pan
  • Jiyu Wang
  • Peihong Wang
  • Ruijie Gao
  • Yi-Cheng Wang
  • Xiangwen Zhang
  • Ji-Jun Zou
  • Zhong Lin Wang
Research Article

Abstract

Harvesting ambient mechanical energy is a key technology for realizing self-powered electronics. With advantages of stability and durability, a liquid–solid-based triboelectric nanogenerator (TENG) has recently drawn much attention. However, the impacts of liquid properties on the TENG performance and the related working principle are still unclear. We assembled herein a U-tube TENG based on the liquid–solid mode and applied 11 liquids to study the effects of liquid properties on the TENG output performance. The results confirmed that the key factors influencing the output are polarity, dielectric constant, and affinity to fluorinated ethylene propylene (FEP). Among the 11 liquids, the pure water-based U-tube TENG exhibited the best output with an open-circuit voltage (Voc) of 81.7 V and a short-circuit current (Isc) of 0.26 μA for the shaking mode (0.5 Hz), which can further increase to 93.0 V and 0.48 μA, respectively, for the horizontal shifting mode (1.25 Hz). The U-tube TENG can be utilized as a self-powered concentration sensor (component concentration or metalion concentration) for an aqueous solution with an accuracy higher than 92%. Finally, an upgraded sandwich-like water-FEP U-tube TENG was applied to harvest water-wave energy, showing a high output with Voc of 350 V, Isc of 1.75 μA, and power density of 2.04 W/m3. We successfully lighted up 60 LEDs and powered a temperature–humidity meter. Given its high output performance, the water-FEP U-tube TENG is a very promising approach for harvesting water-wave energy for self-powered electronics.

Keywords

triboelectric nanogenerator FEP U tube liquid properties ionic aqueous solution water-wave energy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Research was supported by the KAUST, the Hightower Chair foundation, and the “thousands talents” program for pioneer researcher and his innovation team, China, the National Key R & D Project from the Ministry of Science and Technology (Nos. 2016YFA0202704 and 2016YFA0202702), the National Natural Science Foundation of China (Nos. 51432005, 5151101243, and 51561145021), and the Chinese Scholars Council.

Supplementary material

12274_2018_1989_MOESM1_ESM.mp4 (3.4 mb)
Supplementary material, approximately 3.40 MB.
12274_2018_1989_MOESM2_ESM.mp4 (3.3 mb)
Supplementary material, approximately 3.33 MB.
12274_2018_1989_MOESM3_ESM.mp4 (5.8 mb)
Supplementary material, approximately 5.82 MB.
12274_2018_1989_MOESM4_ESM.mp4 (6.1 mb)
Supplementary material, approximately 6.10 MB.
12274_2018_1989_MOESM5_ESM.pdf (788 kb)
Liquid-FEP-based U-tube triboelectric nanogenerator for harvesting water-wave energy

References

  1. [1]
    Fan, F.-R.; Tian, Z.-Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.CrossRefGoogle Scholar
  2. [2]
    Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.CrossRefGoogle Scholar
  3. [3]
    Zi, Y. L.; Wang, Z. L. Nanogenerators: An emerging technology towards nanoenergy. APL Mater. 2017, 5, 074103.CrossRefGoogle Scholar
  4. [4]
    Wang, Z. L. Catch wave power in floating nets. Nature 2017, 542, 159–160.CrossRefGoogle Scholar
  5. [5]
    Wang, Z. L. On Maxwell's displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.CrossRefGoogle Scholar
  6. [6]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  7. [7]
    Dong, K.; Wang, Y.-C.; Deng, J.; Dai, Y. J.; Zhang, S. L.; Zou, H. Y.; Gu, B. H.; Sun, B. Z.; Wang, Z. L. A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors. ACS Nano 2017, 11, 9490–9499.CrossRefGoogle Scholar
  8. [8]
    Zhang, M.; Jie, Y.; Cao, X.; Bian, J.; Li, T.; Wang, N.; Wang, Z. L. Robust design of unearthed single-electrode TENG from three-dimensionally hybridized copper/polydimethylsiloxane film. Nano Energy 2016, 30, 155–161.CrossRefGoogle Scholar
  9. [9]
    Wen, Z.; Guo, H. Y.; Zi, Y. L.; Yeh, M.-H.; Wang, X.; Deng, J.; Wang, J.; Li, S. M.; Hu, C. G.; Zhu, L. P. et al. Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator. ACS Nano 2016, 10, 6526–6534.CrossRefGoogle Scholar
  10. [10]
    Yu, H.; He, X.; Ding, W. B.; Hu, Y. S.; Yang, D. C.; Lu, S.; Wu, C. S.; Zou, H. Y.; Liu, R. Y.; Lu, C. H. et al. A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv. Energy Mater. 2017, 7, 1700565.CrossRefGoogle Scholar
  11. [11]
    Li, Z. L.; Shen, J. L.; Abdalla, I.; Yu, J. Y.; Ding, B. Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 36, 341–348.CrossRefGoogle Scholar
  12. [12]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.CrossRefGoogle Scholar
  13. [13]
    Chen, J.; Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 2017, 1, 480–521.CrossRefGoogle Scholar
  14. [14]
    He, C.; Han, C. B.; Gu, G. Q.; Jiang, T.; Chen, B. D.; Gao, Z. L.; Wang, Z. L. Hourglass triboelectric nanogenerator as a “direct current” power source. Adv. Energy Mater. 2017, 7, 1700644.CrossRefGoogle Scholar
  15. [15]
    Li, S. M.; Wang, J.; Peng, W. B.; Lin, L.; Zi, Y. L.; Wang, S. H.; Zhang, G.; Wang, Z. L. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators. Adv. Energy Mater. 2017, 7, 1602832.CrossRefGoogle Scholar
  16. [16]
    Shen, J. L.; Li, Z. L.; Yu, J. Y.; Ding, B. Humidity-resisting triboelectric nanogenerator for high performance biomechanical energy harvesting. Nano Energy 2017, 40, 282–288.CrossRefGoogle Scholar
  17. [17]
    Wang, A. C.; Wu, C. S.; Pisignano, D.; Wang, Z. L.; Persano, L. Polymer nanogenerators: Opportunities and challenges for large-scale applications. J. Appl. Polymer Sci., in press, DOI: 10.1002/app.45674.Google Scholar
  18. [18]
    Li, Z. L.; Chen, J.; Zhou, J. J.; Zheng, L.; Pradel, K. C.; Fan, X.; Guo, H. Y.; Wen, Z.; Yeh, M.-H.; Yu, C. W. et al. High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator. Nano Energy 2016, 22, 548–557.CrossRefGoogle Scholar
  19. [19]
    Nguyen, V.; Zhu, R.; Yang, R. S. Environmental effects on nanogenerators. Nano Energy 2015, 14, 49–61.CrossRefGoogle Scholar
  20. [20]
    Zhang, X. L.; Zheng, Y. B.; Wang, D. A.; Zhou, F. Solid-liquid triboelectrification in smart U-tube for multifunctional sensors. Nano Energy 2017, 40, 95–106.CrossRefGoogle Scholar
  21. [21]
    Seol, M.-L.; Jeon, S.-B.; Han, J.-W.; Choi, Y.-K. Ferrofluid- based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 2017, 31, 233–238.CrossRefGoogle Scholar
  22. [22]
    Zhao, X. J.; Tian, J. J.; Kuang, S. Y.; Ouyang, H.; Yan, L.; Wang, Z. L.; Li, Z.; Zhu, G. Biocide-free antifouling on insulating surface by wave-driven triboelectrification-induced potential oscillation. Adv. Mater. Interfaces 2016, 3, 1600187.CrossRefGoogle Scholar
  23. [23]
    Chen, J.; Guo, H. Y.; Zheng, J. G.; Huang, Y. Z.; Liu, G. L.; Hu, C. G.; Wang, Z. L. Self-powered triboelectric micro liquid/gas flow sensor for microfluidics. ACS Nano 2016, 10, 8104–8112.CrossRefGoogle Scholar
  24. [24]
    Li, X. H.; Yeh, M.-H.; Lin, Z.-H.; Guo, H. Y.; Yang, P.-K.; Wang, J.; Wang, S. H.; Yu, R. M.; Zhang, T. J.; Wang, Z. L. Self-powered triboelectric nanosensor for microfluidics and cavity-confined solution chemistry. ACS Nano 2015, 9, 11056–11063.CrossRefGoogle Scholar
  25. [25]
    Lin, Z.-H.; Cheng, G.; Lin, L.; Lee, S.; Wang, Z. L. Water–solid surface contact electrification and its use for harvesting liquid- wave energy. Angew. Chem. Int. Ed. 2013, 52, 12545–12549.CrossRefGoogle Scholar
  26. [26]
    Lin, Z.-H.; Cheng, G.; Lee, S.; Pradel, K. C.; Wang, Z. L. Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process. Adv. Mater. 2014, 26, 4690–4696.CrossRefGoogle Scholar
  27. [27]
    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.CrossRefGoogle Scholar
  28. [28]
    Jeon, S.-B.; Kim, D.; Seol, M.-L.; Park, S.-J.; Choi, Y.-K. 3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy 2015, 17, 82–90.CrossRefGoogle Scholar
  29. [29]
    Kim, T.; Chung, J.; Kim, D. Y.; Moon, J. H.; Lee, S.; Cho, M.; Lee, S. H.; Lee, S. Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia. Nano Energy 2016, 27, 340–351.CrossRefGoogle Scholar
  30. [30]
    Shi, Q. F.; Wang, H.; Wang, T.; Lee, C. Self-powered liquid triboelectric microfluidic sensor for pressure sensing and finger motion monitoring applications. Nano Energy 2016, 30, 450–459.CrossRefGoogle Scholar
  31. [31]
    Xi, Y.; Guo, H. Y.; Zi, Y. L.; Li, X. G.; Wang, J.; Deng, J.; Li, S. M.; Hu, C. G.; Cao, X.; Wang, Z. L. Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv. Energy Mater. 2017, 7, 1602397.CrossRefGoogle Scholar
  32. [32]
    Niu, S. M.; Liu, Y.; Wang, S. H.; Lin, L.; Zhou, Y. S.; Hu, Y. F.; Wang, Z. L. Theory of sliding-mode triboelectric nanogenerators. Adv. Mater. 2013, 25, 6184–6193.CrossRefGoogle Scholar
  33. [33]
    Li, Z. L.; Chen, J.; Guo, H. Y.; Fan, X.; Wen, Z.; Yeh, M.-H.; Yu, C. W.; Cao, X.; Wang, Z. L. Triboelectrification-enabled self-powered detection and removal of heavy metal ions in wastewater. Adv. Mater. 2016, 28, 2983–2991.CrossRefGoogle Scholar
  34. [34]
    Allred, A. L.; Rochow, E. G. A scale of electronegativity based on electrostatic force. J. Inorg. Nuclear Chem. 1958, 5, 264–268.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Lun Pan
    • 1
    • 2
    • 3
  • Jiyu Wang
    • 1
  • Peihong Wang
    • 1
  • Ruijie Gao
    • 2
    • 3
  • Yi-Cheng Wang
    • 1
  • Xiangwen Zhang
    • 2
    • 3
  • Ji-Jun Zou
    • 2
    • 3
  • Zhong Lin Wang
    • 1
    • 4
  1. 1.School of Material Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  3. 3.Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)TianjinChina
  4. 4.Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina

Personalised recommendations