Advertisement

Self-powered versatile shoes based on hybrid nanogenerators

  • Long Liu
  • Wei Tang
  • Chaoran Deng
  • Baodong Chen
  • Kai Han
  • Wei Zhong
  • Zhong Lin Wang
Research Article
  • 47 Downloads

Abstract

A triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) were hybridized to harvest the human mechanical energy. By an effective conjunction of triboelectrification and electromagnetic induction, the hybridized nanogenerator with a radius of 2 cm and height of 1.2 cm could charge a 1,000 μF capacitor to 5.09 V after 100 cycles of vibration. This mini-sized hybrid nanogenerator could then be embedded in shoes to serve as an energy cell. Typical outdoor applications—including driving with a Global Positioning System (GPS) device, charging a Li-ion battery and a cell phone—were successfully demonstrated, suggesting its potential application in smart wearable electronics and future suits of soldiers.

Keywords

triboelectric nanogenerators electromagnetic generators hybrid nanogenerators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

L. L., W. T., and C. R. D. contributed equally to this work. The authors acknowledge the support from the National Key R & D Project from Ministry of Science and Technology (No. 2016YFA0202704), National Natural Science Foundation of China (Nos. 51432005, 5151101243, and 51561145021), Beijing Municipal Science & Technology Commission (No. Y3993113DF), the “Thousands Talents” program for pioneer researcher, and their innovation team in China.

Supplementary material

12274_2018_1978_MOESM1_ESM.avi (7.2 mb)
Supplementary material, approximately 7.16 MB.
12274_2018_1978_MOESM2_ESM.avi (3.1 mb)
Supplementary material, approximately 3.13 MB.
12274_2018_1978_MOESM3_ESM.avi (2.5 mb)
Supplementary material, approximately 2.50 MB.

Supplementary material, approximately 3.35 MB.

12274_2018_1978_MOESM5_ESM.avi (3.4 mb)
Supplementary material, approximately 3.39 MB.
12274_2018_1978_MOESM6_ESM.avi (4.9 mb)
Supplementary material, approximately 4.89 KB.
12274_2018_1978_MOESM7_ESM.pdf (474 kb)
Self-powered versatile shoes based on hybrid nanogenerators

References

  1. [1]
    Pu, X.; Liu, M. M.; Chen, X. Y.; Sun, J. M.; Du, C. H.; Zhang, Y.; Zhai, J. Y.; Hu, W. G.; Wang, Z. L. Ultrastretchable, transparent triboelectric nanogenerator as electronic skin for biomechanical energy harvesting and tactile sensing. Sci. Adv. 2017, 3, e1700015.CrossRefGoogle Scholar
  2. [2]
    Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856.CrossRefGoogle Scholar
  3. [3]
    Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K. V.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514.CrossRefGoogle Scholar
  4. [4]
    Cima, M. J. Next-generation wearable electronics. Nat. Biotechnol. 2014, 32, 642–643.CrossRefGoogle Scholar
  5. [5]
    Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed multifunctional flexible device with an integrated motion sensor for health care monitoring. Sci. Adv. 2016, 2, e1601473.CrossRefGoogle Scholar
  6. [6]
    Wang, X. W.; Gu, Y.; Xiong, Z. P.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342.CrossRefGoogle Scholar
  7. [7]
    Son, D.; Lee, J.; Qiao, S. T.; Ghaffari, R.; Kim, J.; Lee, J. E.; Song, C.; Kim, S. J.; Lee, D. J.; Jun, S. W. et al. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nat. Nanotechnol. 2014, 9, 397–404.CrossRefGoogle Scholar
  8. [8]
    Jing, Q. S.; Xie, Y. N.; Zhu, G.; Han, R. P. S.; Wang, Z. L. Self-powered thin-film motion vector sensor. Nat. Commun. 2015, 6, 8031.CrossRefGoogle Scholar
  9. [9]
    Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.CrossRefGoogle Scholar
  10. [10]
    Lee, J.; Urban, A.; Li, X.; Su, D.; Hautier, G.; Ceder, G. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 2014, 343, 519–522.CrossRefGoogle Scholar
  11. [11]
    Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.CrossRefGoogle Scholar
  12. [12]
    Zhang, L. M.; Xue, F.; Du, W. M.; Han, C. B.; Zhang, C.; Wang, Z. L. Transparent paper-based triboelectric nanogenerator as a page mark and anti-theft sensor. Nano Res. 2014, 7, 1215–1223.CrossRefGoogle Scholar
  13. [13]
    Wu, Y. C.; Zhong, X. D.; Wang, X.; Yang, Y.; Wang, Z. L. Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Res. 2014, 7, 1631–1639.CrossRefGoogle Scholar
  14. [14]
    Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.CrossRefGoogle Scholar
  15. [15]
    Yang, Y.; Loomis, J.; Ghasemi, H.; Lee, S. W.; Wang, Y. J.; Cui, Y.; Chen, G. Membrane-free battery for harvesting low-grade thermal energy. Nano Lett. 2014, 14, 6578–6583.CrossRefGoogle Scholar
  16. [16]
    Hinchet, R.; Kim, S. W. Wearable and implantable mechanical energy harvesters for self-powered biomedical systems. ACS Nano 2015, 9, 7742–7745.CrossRefGoogle Scholar
  17. [17]
    Tang, W.; Han, Y.; Han, C. B.; Gao, C. Z.; Cao, X.; Wang, Z. L. Self-powered water splitting using flowing kinetic energy. Adv. Mater. 2015, 27, 272–276.CrossRefGoogle Scholar
  18. [18]
    Han, J. B.; Fan, F. R.; Xu, C.; Lin, S. S.; Wei, M.; Duan, X.; Wang, Z. L. ZnO nanotube-based dye-sensitized solar cell and its application in self-powered devices. Nanotechnology 2010, 21, 405203.CrossRefGoogle Scholar
  19. [19]
    Zhang, H. L.; Xie, Y. H.; Li, X. M.; Huang, Z. L.; Zhang, S. J.; Su, Y. J.; Wu, B.; He, L.; Yang, W. Q.; Lin, Y. Flexible pyroelectric generators for scavenging ambient thermal energy and as self-powered thermosensors. Energy 2016, 101, 202–210.CrossRefGoogle Scholar
  20. [20]
    Quan, T.; Wang, X.; Wang, Z. L.; Yang, Y. Hybridized electromagnetic–triboelectric nanogenerator for a self-powered electronic watch. ACS Nano 2015, 9, 12301–12310.CrossRefGoogle Scholar
  21. [21]
    Wang, J.; Li, S. M.; Yi, F.; Zi, Y. L.; Lin, J.; Wang, X. F.; Xu, Y. L.; Wang, Z. L. Sustainably powering wearable electronics solely by biomechanical energy. Nat. Commun. 2016, 7, 12744.CrossRefGoogle Scholar
  22. [22]
    Wang, X.; Yang, Y. Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano Energy 2017, 32, 36–41.CrossRefGoogle Scholar
  23. [23]
    Zhang, B. B.; Chen, J.; Jin, L.; Deng, W. L.; Zhang, L.; Zhang, H. T.; Zhu, M. H.; Yang, W. Q.; Wang, Z. L. Rotating- disk-based hybridized electromagnetic–triboelectric nanogenerator for sustainably powering wireless traffic volume sensors. ACS Nano 2016, 10, 6241–6247.CrossRefGoogle Scholar
  24. [24]
    Zhong, X. D.; Yang, Y.; Wang, X.; Wang, Z. L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 2015, 13, 771–780.CrossRefGoogle Scholar
  25. [25]
    Wang, Z. L.; Chen, J.; Lin, L. Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors. Energy Environ. Sci. 2015, 8, 2250–2282.CrossRefGoogle Scholar
  26. [26]
    Wang, Z. L.; Wu, W. Z. Nanotechnology-enabled energy harvesting for self-powered micro-/nanosystems. Angew. Chem., Int. Ed. 2012, 51, 11700–11721.CrossRefGoogle Scholar
  27. [27]
    Wang, S. H.; Lin, L.; Wang, Z. L. Triboelectric nanogenerators as self-powered active sensors. Nano Energy 2015, 11, 436–462.CrossRefGoogle Scholar
  28. [28]
    Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.CrossRefGoogle Scholar
  29. [29]
    Tang, W.; Jiang, T.; Fan, F. R.; Yu, A. F.; Zhang, C.; Cao, X.; Wang, Z. L. Liquid-metal electrode for high-performance triboelectric nanogenerator at an instantaneous energy conversion efficiency of 70.6%. Adv. Funct. Mater. 2015, 25, 3718–3725.CrossRefGoogle Scholar
  30. [30]
    Tang, W.; Meng, B.; Zhang, H. X. Investigation of power generation based on stacked triboelectric nanogenerator. Nano Energy 2013, 2, 1164–1171.CrossRefGoogle Scholar
  31. [31]
    Liu, L.; Tang, W.; Wang, Z. L. Inductively-coupled-plasma-induced electret enhancement for triboelectric nanogenerators. Nanotechnology 2017, 28, 035405.CrossRefGoogle Scholar
  32. [32]
    Li, H. Y.; Su, L.; Kuang, S. Y.; Pan, C. F.; Zhu, G.; Wang, Z. L. Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 2015, 25, 5691–5697.CrossRefGoogle Scholar
  33. [33]
    Jie, Y.; Wang, N.; Cao, X.; Xu, Y.; Li, T.; Zhang, X. J.; Wang, Z. L. Self-powered triboelectric nanosensor with poly (tetrafluoroethylene) nanoparticle arrays for dopamine detection. ACS Nano 2015, 9, 8376–8383.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Long Liu
    • 1
    • 2
  • Wei Tang
    • 1
    • 2
  • Chaoran Deng
    • 1
    • 2
  • Baodong Chen
    • 1
    • 2
  • Kai Han
    • 1
    • 2
  • Wei Zhong
    • 1
    • 2
  • Zhong Lin Wang
    • 1
    • 2
    • 3
  1. 1.CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijingChina
  2. 2.School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations