Skip to main content
Log in

Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hierarchical targeting strategy can combat the sequential drug delivery barriers by changing their properties with response to tumor stimuli. Among these strategies, much less attention has been paid to address the issues of rapid tumor clearance and insufficient cellular translocation. In this work, we demonstrate that a transactivator of transcription (TAT)-presenting nanomedicine (DATAT-NP/Pt), apart from improving tumor accumulation and cellular uptake, can simultaneously enhance tumor retention and promote nuclear translocation of encapsulated platinum prodrugs, and thus improve therapeutic efficacy. Specifically, a protecting 2,3-dimethylmaleic anhydride (DA) corona on the nanomedicine prevented the TAT peptide from serum. DATAT-NP/Pt efficiently accumulated at the tumor site through the enhanced permeability and retention (EPR) effect, followed by acid-triggered TAT presenting within the tumor acidic microenvironment (pH ~ 6.8). The exposed TAT peptide augmented tumor retention and nuclear translocation of DATAT-NP/Pt. We used a tumor-on-a-chip microfluidic system to real-time mimic and analyze tumor accumulation and retention at physiological flow conditions and revealed that surface absorption of nanomedicines on tumors was critical in determining their tumor retention and clearance. Furthermore, the TAT peptide rapidly translocated the DATAT-NP/Pt into the perinuclear region, allowing for higher nuclear platinum concentrations and increased Pt-DNA adduct formation in nuclei, which consequently reversed cisplatin resistance. Our work presents a new strategy to overcome pathophysiological barriers of tumor clearance and insufficient cellular translocation and provides new insights for the design of cancer nanomedicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shi, J. J.; Kantoff, P. W.; Wooster, R.; Farokhzad, O. C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017, 17, 20–37.

    Article  Google Scholar 

  2. Davis, M. E.; Chen, Z.; Shin, D. M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov. 2008, 7, 771–782.

    Article  Google Scholar 

  3. Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195–7206.

    Article  Google Scholar 

  4. Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug. Deliv. Rev. 2008, 60, 1615–1626.

    Article  Google Scholar 

  5. Schrama, D.; Reisfeld, R. A.; Becker, J. C. Antibody targeted drugs as cancer therapeutics. Nat Rev. Drug Discov. 2006, 5, 147–159.

    Article  Google Scholar 

  6. Lu, Y.; Aimetti, A. A.; Langer, R.; Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2016, 2, 16075.

    Article  Google Scholar 

  7. Wang, T. T.; Wang, D. G.; Liu, J. P.; Feng, B.; Zhou, F. Y.; Zhang, H. W.; Zhou, L.; Yin, Q.; Zhang, Z. W.; Cao, Z. L. et al. Acidity-triggered ligand-presenting nanoparticles to overcome sequential drug delivery barriers to tumors. Nano Lett. 2017, 17, 5429–5436.

    Article  Google Scholar 

  8. Torchilin, V. P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat. Rev. Drug Discov. 2014, 13, 813–827.

    Article  Google Scholar 

  9. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  Google Scholar 

  10. Mo, R.; Jiang, T. Y.; DiSanto, R.; Tai, W. Y.; Gu, Z. Atptriggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.

    Article  Google Scholar 

  11. Ji, T. J.; Lang, J. Y.; Wang, J.; Cai, R.; Zhang, Y. L.; Qi, F. F.; Zhang, L. J.; Zhao, X.; Wu, W. J.; Hao, J. H. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 2017, 11, 8668–8678.

    Article  Google Scholar 

  12. Liu, Y.; van der Mei, H. C.; Zhao, B. R.; Zhai, Y.; Cheng, T. J.; Li, Y. F.; Zhang, Z. K.; Busscher, H. J.; Ren, Y. J.; Shi, L. Q. Eradication of multidrug-resistant staphylococcal infections by light-activatable micellar nanocarriers in a murine model. Adv. Funct. Mater. 2017, 27, 1701974.

    Article  Google Scholar 

  13. Du, B. J.; Liu, J. H.; Ding, G. Y.; Han, X.; Li, D.; Wang, E. K.; Wang, J. Positively charged graphene/fe3o4/polyethylenimine with enhanced drug loading and cellular uptake for magnetic resonance imaging and magnetresponsive cancer therapy. Nano Res. 2017, 10, 2280–2295.

    Article  Google Scholar 

  14. Wang, S.; Huang, P.; Chen, X. Y. Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization. Adv. Mater. 2016, 28, 7340–7364.

    Article  Google Scholar 

  15. Tang, L.; Yang, X. J.; Yin, Q.; Cai, K. M.; Wang, H.; Chaudhury, I.; Yao, C.; Zhou, Q.; Kwon, M.; Hartman, J. A. et al. Investigating the optimal size of anticancer nanomedicine. Proc. Natl. Acad. Sci. USA 2014, 111, 15344–15349.

    Article  Google Scholar 

  16. Larsen, E. K. U.; Nielsen, T.; Wittenborn, T.; Birkedal, H.; Vorup-Jensen, T.; Jakobsen, M. H.; Ostergaard, L.; Horsman, M. R.; Besenbacher, F.; Howard, K. A. et al. Size-dependent accumulation of pegylated silane-coated magnetic iron oxide nanoparticles in murine tumors. Acs Nano 2009, 3, 1947–1951.

    Article  Google Scholar 

  17. Zhang, D.; Qi, G. B.; Zhao, Y. X.; Qiao, S. L.; Yang, C.; Wang, H. In situ formation of nanofibers from purpurin18-peptide conjugates and the assembly induced retention effect in tumor sites. Adv. Mater. 2015, 27, 6125–6130.

    Article  Google Scholar 

  18. Albanese, A.; Lam, A. K.; Sykes, E. A.; Rocheleau, J. V.; Chan, W. C. W. Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat. Commun. 2013, 4, 2718.

    Article  Google Scholar 

  19. Yameen, B.; Choi, W. I.; Vilos, C.; Swami, A.; Shi, J. J.; Farokhzad, O. C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release 2014, 190, 485–499.

    Article  Google Scholar 

  20. Pan, L. M.; Liu, J. N.; He, Q. J.; Wang, L. J.; Shi, J. L. Overcoming multidrug resistance of cancer cells by direct intranuclear drug delivery using TAT-conjugated mesoporous silica nanoparticles. Biomaterials 2013, 34, 2719–2730.

    Article  Google Scholar 

  21. Holohan, C.; van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

    Article  Google Scholar 

  22. Meijer, C.; Mulder, N. H.; Timmer-Bosscha, H.; Sluiter, W. J.; Meersma, G. J.; De Vries, E. G. E. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res. 1992, 52, 6885–6889.

    Google Scholar 

  23. Han, K.; Zhang, W. Y.; Zhang, J.; Lei, Q.; Wang, S. B.; Liu, J. W.; Zhang, X. Z.; Han, H. Y. Acidity-triggered tumortargeted chimeric peptide for enhanced intra-nuclear photodynamic therapy. Adv. Funct. Mater. 2016, 26, 4351 Func.

    Article  Google Scholar 

  24. Han, S. S.; Li, Z. Y.; Zhu, J. Y.; Han, K.; Zeng, Z. Y.; Hong, W.; Li, W. X.; Jia, H. Z.; Liu, Y.; Zhuo, R. X. et al. Dual-pH sensitive charge-reversal polypeptide micelles for tumor-triggered targeting uptake and nuclear drug delivery. Small 2015, 11, 2543l ive.

    Article  Google Scholar 

  25. Xu, P. S.; van Kirk, E. A.; Zhan, Y. H.; Murdoch, W. J.; Radosz, M.; Shen, Y. Q. Targeted charge-reversal nanoparticles for nuclear drug delivery. Angew. Chem., Int. Ed. 2007, 46, 4999–5002.

    Article  Google Scholar 

  26. Wang, H. B.; Li, Y.; Bai, H. S.; Shen, J.; Chen, X.; Ping, Y.; Tang, G. P. A cooperative dimensional strategy for enhanced nucleus-targeted delivery of anticancer drugs. Adv. Funct. Mater. 2017, 27, 1700339.

    Article  Google Scholar 

  27. Görlich, D.; Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 1999, 15, 607–660.

    Article  Google Scholar 

  28. Tammam, S. N.; Azzazy, H. M. E.; Lamprecht, A. How successful is nuclear targeting by nanocarriers? J. Control. Release 2016, 229, 140–153.

    Article  Google Scholar 

  29. Qiu, L. P.; Chen, T.; Öçsoy, I.; Yasun, E.; Wu, C. C.; Zhu, G. Z.; You, M. X.; Han, D.; Jiang, J. H.; Yu, R. Q. et al. A cell-targeted, size-photocontrollable, nuclear-uptake nanodrug delivery system for drug-resistant cancer therapy. Nano. Lett. 2015, 15, 457–463.

    Article  Google Scholar 

  30. Huang, Y. Z.; Jiang, Y. F.; Wang, H. Y.; Wang, J. X.; Shin, M. C.; Byun, Y.; He, H.; Liang, Y. Q.; Yang, V. C. Curb challenges of the "trojan horse" approach: Smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv. Drug Deliv. Rev. 2013, 65, 1299–1315.

    Article  Google Scholar 

  31. Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.

    Article  Google Scholar 

  32. Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 TAT protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 1997, 272, 16010–16017.

    Article  Google Scholar 

  33. Mattaj, I. W.; Englmeier, L. Nucleocytoplasmic transport: The soluble phase. Annu. Rev. Biochem. 1998, 67, 265–306.

    Article  Google Scholar 

  34. Torchilin, V. P. Tat peptide-mediated intracellular delivery of pharmaceutical nanocarriers. Adv. Drug Deliv. Rev. 2008, 60, 548–558.

    Article  Google Scholar 

  35. Hsu, P. P.; Sabatini, D. M. Cancer cell metabolism: Warburg and beyond. Cell 2008, 134, 703–707.

    Article  Google Scholar 

  36. Heiden, M. G. V.; Cantley, L. C.; Thompson, C. B. Understanding the warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033.

    Article  Google Scholar 

  37. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584.

    Article  Google Scholar 

  38. Wheate, N. J.; Walker, S.; Craig, G. E.; Oun, R. The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 2010, 39, 8113–8127.

    Article  Google Scholar 

  39. Wang, X.; Yang, C. C.; Zhang, Y. J.; Zhen, X.; Wu, W.; Jiang, X. Q. Delivery of platinum(IV) drug to subcutaneous tumor and lung metastasis using bradykinin-potentiating peptide-decorated chitosan nanoparticles. Biomaterials 2014, 35, 6439–6453.

    Article  Google Scholar 

  40. Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-plga-peg nanoparticles. Proc. Natl. Acad. Sci. USA 2008, 105, 17356–17361.

    Article  Google Scholar 

  41. Fu, L. Y.; Yuan, P.; Ruan, Z.; Liu, L.; Li, T. W.; Yan, L. F. Ultra-pH-sensitive polypeptide micelles with large fluorescence off/on ratio in near infrared range. Polym. Chem. 2017, 8, 1028–1038.

    Article  Google Scholar 

  42. Li, H. J.; Du, J. Z.; Du, X. J.; Xu, C. F.; Sun, C. Y.; Wang, H. X.; Cao, Z. T.; Yang, X. Z.; Zhu, Y. H.; Nie, S. M. et al. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 4164–4169.

    Article  Google Scholar 

  43. Mishra, A.; Lai, G. H.; Schmidt, N. W.; Sun, V. Z.; Rodriguez, A. R.; Tong, R.; Tang, L.; Cheng, J.; Deming, T. J.; Kamei, D. T. et al. Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 16883–16888.

    Article  Google Scholar 

  44. Xu, X. Y.; Xie, K.; Zhang, X. Q.; Pridgen, E. M.; Park, G. Y.; Cui, D. S.; Shi, J. J.; Wu, J.; Kantoff, P. W.; Lippard, S. J. et al. Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of sirna and cisplatin prodrug. Proc. Natl. Acad. Sci. USA 2013, 110, 18638–18643.

    Article  Google Scholar 

  45. Han, K.; Zhang, J.; Zhang, W. Y.; Wang, S. B.; Xu, L. M.; Zhang, C.; Zhang, X. Z.; Han, H. Y. Tumor-triggered geometrical shape switch of chimeric peptide for enhanced in vivo tumor internalization and photodynamic therapy. ACS Nano 2017, 11, 3178–3188.

    Article  Google Scholar 

  46. Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S.; Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev. 1999, 99, 3181–3198.

    Article  Google Scholar 

  47. Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev. 2013, 65, 1866–1879.

    Article  Google Scholar 

  48. Wu, M. Y.; Meng, Q. S.; Chen, Y.; Du, Y. Y.; Zhang, L. X.; Li, Y. P.; Zhang, L. L.; Shi, J. L. Large-pore ultrasmall mesoporous organosilica nanoparticles: Micelle/precursor co-templating assembly and nuclear-targeted gene delivery. Adv. Mater. 2015, 27, 215–222.

    Article  Google Scholar 

  49. Jin, E. L.; Zhang, B.; Sun, X. R.; Zhou, Z. X.; Ma, X. P.; Sun, Q. H.; Tang, J. B.; Shen, Y. Q.; Van Kirk, E.; Murdoch, W. J. et al. Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J. Am. Chem. Soc. 2013, 135, 933–940.

    Article  Google Scholar 

  50. Sun, T. D.; Cui, W.; Yan, M.; Qin, G.; Guo, W.; Gu, H. X.; Liu, S. Q.; Wu, Q. Target delivery of a novel antitumor organoplatinum(IV)-substituted polyoxometalate complex for safer and more effective colorectal cancer therapy in vivo. Adv. Mater. 2016, 28, 7397–7404.

    Article  Google Scholar 

  51. Wang, X. Y.; Guo, Z. J. Targeting and delivery of platinumbased anticancer drugs. Chem. Soc. Rev. 2013, 42, 202–224.

    Article  Google Scholar 

  52. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

    Article  Google Scholar 

  53. Peer, D.; Karp, J. M.; Hong, S.; FaroKHzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  Google Scholar 

  54. Heldin, C. H.; Rubin, K.; Pietras, K.; Östman, A. High interstitial fluid pressure—An obstacle in cancer therapy. Nat. Rev. Cancer 2004, 4, 806–813.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFA0205600), and the National Natural Science Foundation of China (Nos. 51773191, 51573176 and 51633008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Yan, Xianzhu Yang or Yucai Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, J., Yang, J. et al. Acidity-triggered TAT-presenting nanocarriers augment tumor retention and nuclear translocation of drugs. Nano Res. 11, 5716–5734 (2018). https://doi.org/10.1007/s12274-017-1925-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1925-4

Keywords

Navigation