Skip to main content
Log in

Programmable DNA-responsive microchip for the capture and release of circulating tumor cells by nucleic acid hybridization

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The detection and analysis of circulating tumor cells (CTCs) from patients´ blood is important to assess tumor status; however, it remains a challenge. In the present study, we developed a programmable DNA-responsive microchip for the highly efficient capture and nondestructive release of CTCs via nucleic acid hybridization. Transparent and patternable substrates with hierarchical architectures were integrated into the microchip with herringbone grooves, resulting in greatly enhanced cell-surface interaction via herringbone micromixers, more binding sites, and better matched topographical interactions. In combination with a high-affinity aptamer, target cancer cells were specifically and efficiently captured on the chip. Captured cancer cells were gently released from the chip under physiological conditions using toehold-mediated strand displacement, without any destructive factors for cells or substrates. More importantly, aptamer-containing DNA sequences on the surface of the retrieved cancer cells could be further amplified by polymerase chain reaction (PCR), facilitating the detection of cell surface biomarkers and characterization of the CTCs. Furthermore, this system was extensively applied to the capture and release of CTCs from patients´ blood samples, demonstrating a promising high-performance platform for CTC enrichment, release, and characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alix-Panabières, C.; Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 2014, 14, 623–631.

    Article  Google Scholar 

  2. Paterlini-Brechot, P.; Benali, N. L. Circulating tumor cells (CTC) detection: Clinical impact and future directions. Cancer Lett. 2007, 253, 180–204.

    Article  Google Scholar 

  3. Park, J. M.; Lee, J. Y.; Lee, J. G.; Jeong, H.; Oh, J. M.; Kim, Y. J.; Park, D.; Kim, M. S.; Lee, H. J.; Oh, J. H. et al. Highly efficient assay of circulating tumor cells by selective sedimentation with a density gradient medium and microfiltration from whole blood. Anal. Chem. 2012, 84, 7400–7407.

    Article  Google Scholar 

  4. Seal, S. H. A sieve for the isolation of cancer cells and other large cells from the blood. Cancer 1964, 17, 637–642.

    Article  Google Scholar 

  5. Lee, H. J.; Oh, J. H.; Oh, J. M.; Park, J. M.; Lee, J. G.; Kim, M. S.; Kim, Y. J.; Kang, H. J.; Jeong, J.; Kim, S. I. et al. Efficient isolation and accurate in situ analysis of circulating tumor cells using detachable beads and a high-pore-density filter. Angew. Chem., Int. Ed. 2013, 52, 8337–8340.

    Article  Google Scholar 

  6. Tang, Y. D.; Shi, J.; Li, S. S.; Wang, L.; Cayre, Y. E.; Chen, Y. Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Sci. Rep. 2014, 4, 6052.

    Article  Google Scholar 

  7. Cristofanilli, M.; Budd, G. T.; Ellis, M. J.; Stopeck, A.; Matera, J.; Miller, M. C.; Reuben, J. M.; Doyle, G. V.; Allard, W. J.; Terstappen, L. W. et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791.

    Article  Google Scholar 

  8. Wen, C. Y.; Wu, L. L.; Zhang, Z. L.; Liu, Y. L.; Wei, S. Z.; Hu, J.; Tang, M.; Sun, E. Z.; Gong, Y. P.; Yu, J. et al. Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 2014, 8, 941–949.

    Article  Google Scholar 

  9. Xie, M.; Lu, N. N.; Cheng, S. B.; Wang, X. Y.; Wang, M.; Guo, S.; Wen, C. Y.; Hu, J.; Pang, D. W.; Huang, W. H. Engineered decomposable multifunctional nanobioprobes for capture and release of rare cancer cells. Anal. Chem. 2014, 86, 4618–4626.

    Article  Google Scholar 

  10. Wang, S. T.; Wang, H.; Jiao, J.; Chen, K. J.; Owens, G. E.; Kamei, K.; Sun, J.; Sherman, D. J.; Behrenbruch, C. P.; Wu, H. et al. Three-dimensional nanostructured substrates toward efficient capture of circulating tumor cells. Angew. Chem., Int. Ed. 2009, 48, 8970–8973.

    Article  Google Scholar 

  11. Zhang, N. G.; Deng, Y. L.; Tai, Q. D.; Cheng, B. R.; Zhao, L. B.; Shen, Q. L.; He, R. X.; Hong, L. Y.; Liu, W.; Guo, S. S. et al. Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv. Mater. 2012, 24, 2756–2760.

    Article  Google Scholar 

  12. Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450, 1235–1239.

    Article  Google Scholar 

  13. Stott, S. L.; Hsu, C. H.; Tsukrov, D. I.; Yu, M.; Miyamoto, D. T.; Waltman, B. A.; Rothenberg, S. M.; Shah, A. M.; Smas, M. E.; Korir, G. K. et al. Isolation of Circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 2010, 107, 18392–18397.

    Article  Google Scholar 

  14. Wang, S. T.; Liu, K.; Liu, J.; Yu, Z. T. F.; Xu, X. W.; Zhao, L. B.; Lee, T.; Lee, E. K.; Reiss, J.; Lee, Y. K. et al. Highly efficient capture of circulating tumor cells by using nanostructured silicon substrates with integrated chaotic micromixers. Angew. Chem., Int. Ed. 2011, 50, 3084–3088.

    Article  Google Scholar 

  15. Yoon, H. J.; Kim, T. H.; Zhang, Z.; Azizi, E.; Pham, T. M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M. S.; Hayes, D. F. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 2013, 8, 735–741.

    Article  Google Scholar 

  16. Shen, Q. L.; Xu, L.; Zhao, L. B.; Wu, D. X.; Fan, Y. S.; Zhou, Y. L.; Ouyang, W. H.; Xu, X. C.; Zhang, Z.; Song, M. et al. Specific capture and release of circulating tumor cells using aptamer-modified nanosubstrates. Adv. Mater. 2013, 25, 2368–2373.

    Article  Google Scholar 

  17. Sheng, W. A.; Chen, T.; Tan, W. H.; Fan, Z. H. Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 2013, 7, 7067–7076.

    Article  Google Scholar 

  18. Park, M. H.; Reátegui, E.; Li, W.; Tessier, S. N.; Wong, K. H. K.; Jensen, A. E.; Thapar, V.; Ting, D.; Toner, M.; Stott, S. L. et al. Enhanced isolation and release of circulating tumor cells using nanoparticle binding and ligand exchange in a microfluidic chip. J. Am. Chem. Soc. 2017, 139, 2741–2749.

    Article  Google Scholar 

  19. Cheng, S. B.; Xie, M.; Xu, J. Q.; Wang, J.; Lv, S. W.; Guo, S.; Shu, Y.; Wang, M.; Dong, W. G.; Huang, W. H. High-efficiency capture of individual and cluster of circulating tumor cells by a microchip embedded with three-dimensional poly(dimethylsiloxane) scaffold. Anal. Chem. 2016, 88, 6773–6780.

    Article  Google Scholar 

  20. Adams, A. A.; Okagbare, P. I.; Feng, J.; Hupert, M. L.; Patterson, D.; Göttert, J.; McCarley, R. L.; Nikitopoulos, D.; Murphy, M. C.; Soper, S. A. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 2008, 130, 8633–8641.

    Article  Google Scholar 

  21. Labib, M.; Green, B.; Mohamadi, R. M.; Mepham, A.; Ahmed, S. U.; Mahmoudian, L.; Chang, I. H.; Sargent, E. H.; Kelley S. O. Aptamer and antisense-mediated two-dimensional isolation of specific cancer cell subpopulations. J. Am. Chem. Soc. 2016, 138, 2476–2479.

    Article  Google Scholar 

  22. Song, Y. L.; Zhu, Z.; An, Y.; Zhang, W. T.; Zhang, H. M.; Liu, D.; Yu, C. D.; Duan, W.; Yang, C. J. Selection of DNA aptamers against epithelial cell adhesion molecule for cancer cell imaging and circulating tumor cell capture. Anal. Chem. 2013, 85, 4141–4149.

    Article  Google Scholar 

  23. Wan, Y.; Liu, Y. L.; Allen, P. B.; Asghar, W.; Mahmood, M. A. I.; Tan, J. F.; Duhon, H.; Kim, Y. T.; Ellingtone A. D.; Iqbal, S. M. Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip 2012, 12, 4693–4701.

    Article  Google Scholar 

  24. Fang, S.; Wang, C.; Xiang, J.; Cheng, L.; Song, X. J.; Xu, L. G.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assisted by magnetic separation for effective isolation and sensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327–1336.

    Article  Google Scholar 

  25. Qiu, J. C.; Zhao, K.; Li, L. L.; Yu, X.; Guo, W. B.; Wang, S.; Zhang, X. D.; Pan, C. F.; Wang, Z. L.; Liu, H. A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Res. 2017, 10, 776–784.

    Article  Google Scholar 

  26. Wu, L.; Ji, H. W.; Guan, Y. J.; Ran, X.; Ren, J. S.; Qu, X. G. A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. NPG Asia Mater. 2017, 9, e356.

    Article  Google Scholar 

  27. Wang, Z. L.; Sun, N.; Liu, M.; Cao, Y.; Wang, K. W.; Wang, J. E.; Pei, R. J. Multifunctional nanofibers for specific purification and release of CTCs. ACS Sens. 2017, 2, 547–552.

    Article  Google Scholar 

  28. Zhang, P. C.; Chen, L.; Xu, T. L.; Liu, H. L.; Liu, X. L.; Meng, J. X.; Yang, G.; Jiang, L.; Wang, S. T. Programmable fractal nanostructured interfaces for specific recognition and electrochemical release of cancer cells. Adv. Mater. 2013, 25, 3566–3570.

    Article  Google Scholar 

  29. Zhang, F. L.; Jiang, Y.; Liu, X. L.; Meng, J. X.; Zhang, P. C.; Liu, H. L.; Yang, G.; Li, G. N.; Jiang, L.; Wan, L. J. et al. Hierarchical nanowire arrays as three-dimensional fractal nanobiointerfaces for high efficient capture of cancer cells. Nano Lett. 2016, 16, 766–772.

    Article  Google Scholar 

  30. Meng, J. X.; Zhang, P. C.; Zhang, F. L.; Liu, H. L.; Fan, J. B.; Liu, X. L.; Yang, G.; Jiang, L.; Wang, S. T. A Self-cleaning TiO2 nanosisal-like coating toward disposing nanobiochips of cancer detection. ACS Nano 2015, 9, 9284–9291.

    Article  Google Scholar 

  31. Guo, S.; Xu, J. Q.; Xie, M.; Huang, W.; Yuan, E. F.; Liu, Y.; Fan, L. P.; Cheng, S. B.; Liu, S. M.; Wang, F. B. et al. Degradable zinc-phosphate-based hierarchical nanosubstrates for capture and release of circulating tumor cells. ACS Appl. Mater. Interfaces 2016, 8, 15917–15925.

    Article  Google Scholar 

  32. Zhang, L. Q.; Wan, S.; Jiang, Y.; Wang, Y. Y.; Fu, T.; Liu, Q. L.; Cao, Z. J.; Qiu, L. P.; Tan, W. H. Molecular elucidation of disease biomarkers at the interface of chemistry and biology. J. Am. Chem. Soc. 2017, 139, 2532–2540.

    Article  Google Scholar 

  33. Lv, S. W.; Wang, J.; Xie, M.; Lu, N. N.; Li, Z.; Yan, X. W.; Cai, S. L.; Zhang, P. A.; Dong, W. G.; Huang, W. H. Photoresponsive immunomagnetic nanocarrier for capture and release of rare circulating tumor cells. Chem. Sci. 2015, 6, 6432–6438.

    Article  Google Scholar 

  34. Li, W.; Wang, J. S.; Ren, J. S.; Qu, X. G. Near-infrared upconversion controls photocaged cell adhesion. J. Am. Chem. Soc. 2014, 136, 2248–2251.

    Article  Google Scholar 

  35. Jeon, S.; Moon, J. M.; Lee, E. S.; Kim, Y. H.; Cho, Y. An electroactive biotin-doped polypyrrole substrate that immobilizes and releases EpCAM-positive cancer cells. Angew. Chem., Int. Ed. 2014, 53, 4597–4602.

    Article  Google Scholar 

  36. Reátegui, E.; Aceto, N.; Lim, E. J.; Sullivan, J. P.; Jensen, A. E.; Zeinali, M.; Martel, J. M.; Aranyosi, A. J.; Li, W.; Castleberry, S. et al. Tunable nanostructured coating for the capture and selective release of viable circulating tumor cells. Adv. Mater. 2015, 27, 1593–1599.

    Article  Google Scholar 

  37. Hou, S.; Zhao, H. C.; Zhao, L. B.; Shen, Q. L.; Wei, K. S.; Suh, D. Y.; Nakao, A.; Garcia, M. A.; Song, M.; Lee, T. et al. Capture and stimulated release of circulating tumor cells on polymer-grafted silicon nanostructures. Adv. Mater. 2013, 25, 1547–1551.

    Article  Google Scholar 

  38. Lv, S. W.; Liu, Y.; Xie, M.; Wang, J.; Yan, X. W.; Li, Z.; Dong, W. G.; Huang, W. H. Near-infrared light-responsive hydrogel for specific recognition and photothermal site-release of circulating tumor cells. ACS Nano 2016, 10, 6201–6210.

    Article  Google Scholar 

  39. Huang, Q. Q.; Chen, B. L.; He, R. X.; He, Z. B.; Cai, B.; Xu, J. H.; Qian, W. Y.; Chan, H. L.; Liu, W.; Guo, S. S. et al. Capture and release of cancer cells based on sacrificeable transparent MnO2 nanospheres thin film. Adv. Healthcare Mater. 2014, 3, 1420–1425.

    Article  Google Scholar 

  40. Liu, H. L.; Li, Y. Y.; Sun, K.; Fan, J. B.; Zhang, P. C.; Meng, J. X.; Wang, S. T.; Jiang, L. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 2013, 135, 7603–7609.

    Article  Google Scholar 

  41. Zhang, Z. Y.; Chen, N. C.; Li, S. H.; Battig, M. R.; Wang, Y. Programmable hydrogels for controlled cell catch and release using hybridized aptamers and complementary sequences. J. Am. Chem. Soc. 2012, 134, 15716–15719.

    Article  Google Scholar 

  42. Delport, F.; Pollet, J.; Janssen, K.; Verbruggen, B.; Knez, K.; Spasic, D.; Lammertyn, J. Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology 2012, 23, 065503.

    Article  Google Scholar 

  43. Kwong, G. A.; Radu, C. G.; Hwang, K.; Shu, C. J.; Ma, C.; Koya, R. C.; Comin-Anduix, B.; Hadrup, S. R.; Bailey, R. C.; Witte, O. N. et al. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells. J. Am. Chem. Soc. 2009, 131, 9695–9703.

    Article  Google Scholar 

  44. Vermesh, U.; Vermesh, O.; Wang, J.; Kwong, G. A.; Ma, C.; Hwang, K.; Heath, J. R. High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications. Angew. Chem., Int. Ed. 2011, 50, 7378–7380.

    Article  Google Scholar 

  45. Deng, Y. L.; Zhang, Y.; Sun, S.; Wang, Z. H.; Wang, M. J.; Yu, B. Q.; Czajkowsky, D. M.; Liu, B. Y.; Li, Y.; Wei, W. et al. An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci. Rep. 2014, 4, 7499.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21432008, 91413109 and 21575110). China Postdoctoral Innovative Talent Support Program of China (No. BX201700176).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihua Huang or Xiang Zhou.

Electronic supplementary material

12274_2017_1885_MOESM1_ESM.pdf

Programmable DNA-responsive microchip for the capture and release of circulating tumor cells by nucleic acid hybridization

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Huang, H., Deng, X. et al. Programmable DNA-responsive microchip for the capture and release of circulating tumor cells by nucleic acid hybridization. Nano Res. 11, 2592–2604 (2018). https://doi.org/10.1007/s12274-017-1885-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1885-8

Keywords

Navigation