Strong contact coupling of neuronal growth cones with height-controlled vertical silicon nanocolumns

Research Article
  • 165 Downloads

Abstract

In this study, we report that height-controlled vertically etched silicon nano-column arrays (vSNAs) induce strong growth cone-to-substrate coupling and accelerate In vitroneurite development while preserving the essential featuresof initial neurite formation. Large-scale preparation of vSNAs with flat head morphology enabled the generation of well-controlled topographical stimulation without cellular impalement. A systematic analysis on topography-induced variations on cellular morphology and cytoskeletal dynamics wasconducted. In addition, neurite development on the grid-patterned vSNAs exhibited preferential adhesion to the nanostructured region and outgrowthdirectionality. The arrangement of cytoskeletal proteins and the expression of afocal adhesion complex indicated that a strong coupling existedbetween the underlying nanocolumns and growth cones. Furthermore, the height-controlled nanocolumn substrates differentially modulated neurite polarization and elongation. Our findings provide an important insight into neuron-nanotopographyinteractions and their role in cell adhesion and neurite development.

Keywords

vertical silicon nanostructures metal-assisted chemical etching primary hippocampal neurons neurite outgrowth cytoskeletal dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Basic Science Research Program and the Pioneer Research Center Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (Nos. NRF-2013R1A1A107-6103, NRF-2012R1A3A2026403, and NRF-2012-000-9664), and also by the GIST Research Institute (GRI) in 2016.

Supplementary material

12274_2017_1878_MOESM1_ESM.pdf (2.2 mb)
Strong contact coupling of neuronal growth cones withheight-controlled vertical silicon nanocolumns
12274_2017_1878_MOESM2_ESM.avi (1.3 mb)
Supplementary material, approximately 1.30 MB.

References

  1. [1]
    Dent, E. W.; Gertler, F. B. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron 2003, 40, 209–227.CrossRefGoogle Scholar
  2. [2]
    Geraldo, S.; Gordon-Weeks, P. R. Cytoskeletal dynamics in growth-cone steering. J. Cell Sci. 2009, 122, 3595–3604.CrossRefGoogle Scholar
  3. [3]
    Schaar, B. T.; McConnell, S. K. Cytoskeletal coordination during neuronal migration. Proc. Natl. Acad. Sci. USA 2005, 102, 13652–13657.CrossRefGoogle Scholar
  4. [4]
    Turney, S. G.; Bridgman, P. C. Laminin stimulates and guides axonal outgrowth via growth cone myosin II activity. Nat. Neurosci. 2005, 8, 717–719.CrossRefGoogle Scholar
  5. [5]
    Gomez, N.; Chen, S. C.; Schmidt, C. E. Polarization of hippocampal neurons with competitive surface stimuli: Contact guidance cues are preferred over chemical ligands. J. R. Soc. Interface 2007, 4, 223–233.CrossRefGoogle Scholar
  6. [6]
    San Miguel-Ruiz, J. E.; Letourneau, P. C. The role of Arp2/3 in growth cone actin dynamics and guidance is substrate depe-ndent. J. Neurosci. 2014, 34, 5895–5908.CrossRefGoogle Scholar
  7. [7]
    Kerstein, P. C.; Nichol IV, R. H.; Gomez, T. M. Mechan-ochemical regulation of growth cone motility. Front. Cell. Neurosci. 2015, 9, 244.CrossRefGoogle Scholar
  8. [8]
    Kulangara, K.; Leong, K. W. Substrate topography shapes cell function. Soft Matter 2009, 5, 4072–4076.CrossRefGoogle Scholar
  9. [9]
    Teixeira, A. I.; Abrams, G. A.; Bertics, P. J.; Murphy, C. J.; Nealey, P. F. Epithelial contact guidance on well-defined micro- and nanostructured substrates. J. Cell Sci. 2003, 116, 1881–1892.CrossRefGoogle Scholar
  10. [10]
    Teixeira, A. I.; McKie, G. A.; Foley, J. D.; Bertics, P. J.; Nealey, P. F.; Murphy, C. J. The effect of environmental factors on the response of human corneal epithelial cells to nanoscale substrate topography. Biomaterials 2006, 27, 3945–3954.CrossRefGoogle Scholar
  11. [11]
    Yim, E. K. F.; Reano, R. M.; Pang, S. W.; Yee, A. F.; Chen, C. S.; Leong, K. W. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials 2005, 26, 5405–5413.CrossRefGoogle Scholar
  12. [12]
    Yim, E. K. F.; Darling, E. M.; Kulangara, K.; Guilak, F.; Leong, K. W. Nanotopography-induced changes in focal adhesions, cy-toskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials 2010, 31, 1299–1306.CrossRefGoogle Scholar
  13. [13]
    Watari, S.; Hayashi, K.; Wood, J. A.; Russell, P.; Nealey, P. F.; Murphy, C. J.; Genetos, D. C. Modulation of osteogenic diff-erentiation in hMSCs cells by submicron topographically-patt-erned ridges and grooves. Biomaterials 2012, 33, 128–136.CrossRefGoogle Scholar
  14. [14]
    Foley, J. D.; Grunwald, E. W.; Nealey, P. F.; Murphy, C. J. Cooperative modulation of neuritogenesis by PC12 cells by topography and nerve growth factor. Biomaterials 2005, 26, 3639–3644.CrossRefGoogle Scholar
  15. [15]
    Ferrari, A.; Cecchini, M.; Dhawan, A.; Micera, S.; Tonazzini, I.; Stabile, R.; Pisignano, D.; Beltram, F. Nanotopographic control of neuronal polarity. Nano Lett. 2011, 11, 505–511.CrossRefGoogle Scholar
  16. [16]
    Xie, J. W.; MacEwan, M. R.; Li, X. R.; Sakiyama-Elbert, S. E.; Xia, Y. N. Neurite outgrowth on nanofiber scaffolds with different orders, structures, and surface properties. ACS Nano 2009, 3, 1151–1159.CrossRefGoogle Scholar
  17. [17]
    Cho, W. K.; Kang, K.; Kang, G.; Jang, M. J.; Nam, Y.; Choi, I. S. Pitch-dependent acceleration of neurite outgrowth on nanos-tructured anodized aluminum oxide substrates. Angew. Chem., Int. Ed. 2010, 49, 10114–10118.Google Scholar
  18. [18]
    Kang, K.; Choi, S.-E.; Jang, H. S.; Cho, W. K.; Nam, Y.; Choi, I. S.; Lee, J. S. In vitro developmental acceleration of hipp-ocampal neurons on nanostructures of self-assembled silica be-ads in filopodium-size ranges. Angew. Chem., Int. Ed. 2012, 51, 2855–2858.CrossRefGoogle Scholar
  19. [19]
    Jang, K.-J.; Kim, M. S.; Feltrin, D.; Jeon, N. L.; Suh, K.-Y.; Pertz, O. Two distinct filopodia populations at the growth cone allow to sense nanotopographical extracellular matrix cues to guide neurite outgrowth. PLoS One 2010, 5, e15966.CrossRefGoogle Scholar
  20. [20]
    Kang, K.; Yoon, S. Y.; Choi, S.-E.; Kim, M.-H.; Park, M.; Nam, Y.; Lee, J. S.; Choi, I. S. Cytoskeletal actin dynamics are involved in pitch-dependent neurite outgrowth on bead mono-layers. Angew. Chem., Int. Ed. 2014, 53, 6075–6079.CrossRefGoogle Scholar
  21. [21]
    Liu, X. L.; Wang, S. T. Three-dimensional nano-biointerface as a new platform for guiding cell fate. Chem. Soc. Rev. 2014, 43, 2385–2401.CrossRefGoogle Scholar
  22. [22]
    Kim, W.; Ng, J. K.; Kunitake, M. E.; Conklin, B. R.; Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 2007, 129, 7228–7229.CrossRefGoogle Scholar
  23. [23]
    Hanson, L.; Lin, Z. C.; Xie, C.; Cui, Y.; Cui, B. X. Chara-cterization of the cell–nanopillar interface by transmission electron microscopy. Nano Lett. 2012, 12, 5815–5820.CrossRefGoogle Scholar
  24. [24]
    Xie, X.; Xu, A. M.; Angle, M. R.; Tayebi, N.; Verma, P.; Melosh, N. A. Mechanical model of vertical nanowire cell penetration. Nano Lett. 2013, 13, 6002–6008.CrossRefGoogle Scholar
  25. [25]
    Xu, A. M.; Aalipour, A.; Leal-Ortiz, S.; Mekhdjian, A. H.; Xie, X.; Dunn, A. R.; Garner, C. C.; Melosh, N. A. Quantification of nanowire penetration into living cells. Nat. Commun. 2014, 5, 3613.Google Scholar
  26. [26]
    Qi, S.; Yi, C. Q.; Ji, S. L.; Fong, C.-C.; Yang, M. S. Cell adhesion and spreading behavior on vertically aligned silicon nanowire arrays. ACS Appl. Mater. Interfaces 2009, 1, 30–34.CrossRefGoogle Scholar
  27. [27]
    Bonde, S.; Berthing, T.; Madsen, M. H.; Andersen, T. K.; Buch-Månson, N.; Guo, L.; Li, X. M.; Badique, F.; Anselme, K.; Nygård, J. et al. Tuning InAs nanowire density for HEK293 cell viability, adhesion, and morphology: Perspectives for nano-wire-based biosensors. ACS Appl. Mater. Interfaces 2013, 5, 10510–10519.CrossRefGoogle Scholar
  28. [28]
    Padmanabhan, J.; Kinser, E. R.; Stalter, M. A.; Duncan-Lewis, C.; Balestrini, J. L.; Sawyer, A. J.; Schroers, J.; Kyriakides, T. R. Engineering cellular response using nanopatterned bulk metallic glass. ACS Nano 2014, 8, 4366–4375.CrossRefGoogle Scholar
  29. [29]
    Persson, H.; Købler, C.; Mølhave, K.; Samuelson, L.; Teg-enfeldt, J. O.; Oredsson, S.; Prinz, C. N. Fibroblasts cultured on nanowires exhibit low motility, impaired cell division, and DNA damage. Small 2013, 9, 4006–4016.CrossRefGoogle Scholar
  30. [30]
    Persson, H.; Li, Z.; Tegenfeldt, J. O.; Oredsson, S.; Prinz, C. From immobilized cells to motile cells on a bed-of-nails: Effects of vertical nanowire array density on cell behaviour. Sci. Rep. 2015, 5, 18535.CrossRefGoogle Scholar
  31. [31]
    Li, Z.; Song, J. H.; Mantini, G.; Lu, M.-Y.; Fang, H.; Falconi, C; Chen, L.-J.; Wang, Z. L. Quantifying the traction force of a single cell by aligned silicon nanowire array. Nano Lett. 2009, 9, 3575–3580.CrossRefGoogle Scholar
  32. [32]
    Albuschies, J.; Vogel, V. The role of filopodia in the recognition of nanotopographies. Sci. Rep. 2013, 3, 1658.CrossRefGoogle Scholar
  33. [33]
    Kim, H.; Kim, I.; Choi, H.-J.; Kim, S. Y.; Yang, E. G. Neuron-like differentiation of mesenchymal stem cells on silicon nanowires. Nanoscale 2015, 7, 17131–17138.CrossRefGoogle Scholar
  34. [34]
    Shalek, A. K.; Robinson, J. T.; Karp, E. S.; Lee, J. S.; Ahn, D.R.; Yoon, M.H.; Sutton, A.; Jorgolli, M.; Gertner, R. S.; Gujral, T. S. et al. Vertical silicon nanowires as a universal platform for delivering biomolecules into living cells. Proc. Natl. Acad. Sci. USA 2010, 107, 1870–1875.CrossRefGoogle Scholar
  35. [35]
    Shalek, A. K.; Gaublomme, J. T.; Wang, L. L.; Yosef, N.; Chevrier, N.; Andersen, M. S.; Robinson, J. T.; Pochet, N.; Neuberg, D.; Gertner, R. S. et al. Nanowire-mediated delivery enables functional interrogation of primary immune cells: Application to the analysis of chronic lymphocytic leukemia. Nano Lett. 2012, 12, 6498–6504.CrossRefGoogle Scholar
  36. [36]
    Hällström, W.; Mårtensson, T.; Prinz, C.; Gustavsson, P.; Montelius, L.; Samuelson, L.; Kanje, M. Gallium phosphide nanowires as a substrate for cultured neurons. Nano Lett. 2007, 7, 2960–2965.CrossRefGoogle Scholar
  37. [37]
    Prinz, C.; Hällström, W.; Mårtensson, T.; Samuelson, L.; Montelius, L.; Kanje, M. Axonal guidance on patterned free-st-anding nanowire surfaces. Nanotechnology 2008, 19, 345101.CrossRefGoogle Scholar
  38. [38]
    Piret, G.; Perez, M.-T.; Prinz, C. N. Support of neuronal growth over glial growth and guidance of optic nerve axons by vertical nanowire arrays. ACS Appl. Mater. Interfaces 2015, 7, 18944–18948.CrossRefGoogle Scholar
  39. [39]
    Xie, C.; Hanson, L.; Xie, W. J.; Lin, Z. L.; Cui, B. X.; Cui, Y. Noninvasive neuron pinning with nanopillar arrays. Nano Lett. 2010, 10, 4020–4024.CrossRefGoogle Scholar
  40. [40]
    Kang, K.; Park, Y.S.; Park, M.; Jang, M. J.; Kim, S.M.; Lee, J.; Choi, J. Y.; Jung, D. H.; Chang, Y.T.; Yoon, M.H. et al. Axon-first neuritogenesis on vertical nanowires. Nano Lett. 2016, 16, 675–680.CrossRefGoogle Scholar
  41. [41]
    Wierzbicki, R.; Købler, C.; Jensen, M. R. B.; Lopacinska, J.; Schmidt, M. S.; Skolimowski, M.; Abeille, F.; Qvortrup, K.; Mølhave, K. Mapping the complex morphology of cell interactions with nanowire substrates using FIB-SEM. PLoS One 2013, 8, e53307.CrossRefGoogle Scholar
  42. [42]
    Berthing, T.; Bonde, S.; Rostgaard, K. R.; Madsen, M. H.; Sørensen, C. B.; Nygård, J.; Martinez, K. L. Cell membrane conformation at vertical nanowire array interface revealed by fluorescence imaging. Nanotechnology 2012, 23, 415102.CrossRefGoogle Scholar
  43. [43]
    Bucaro, M. A.; Vasquez, Y.; Hatton, B. D.; Aizenberg, J. Fine-tuning the degree of stem cell polarization and alignment on ordered arrays of high-aspect-ratio nanopillars. ACS Nano 2012, 6, 6222–6230.CrossRefGoogle Scholar
  44. [44]
    Lee, S.; Kim, D.; Kim, S.-M.; Kim, J.-A.; Kim, T.; Kim, D.-Y.; Yoon, M.-H. Polyelectrolyte multilayer-assisted fabrication of non-periodic silicon nanocolumn substrates for cellular interface applications. Nanoscale 2015, 7, 14627–14635.CrossRefGoogle Scholar
  45. [45]
    Fath, T.; Ke, Y. D.; Gunning, P.; Götz, J.; Ittner, L. M. Primary support cultures of hippocampal and substantia nigra neurons. Nat. Protoc. 2008, 4, 78–85.CrossRefGoogle Scholar
  46. [46]
    Yang, K.; Jung, H.; Lee, H.-R.; Lee, J. S.; Kim, S. R.; Song, K. Y.; Cheong, E.; Bang, J.; Im, S. G.; Cho, S.-W. Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 2014, 8, 7809–7822.CrossRefGoogle Scholar
  47. [47]
    Brunetti, V.; Maiorano, G.; Rizzello, L.; Sorce, B.; Sabella, S.; Cingolani, R.; Pompa, P. P. Neurons sense nanoscale roughness with nanometer sensitivity. Proc. Natl. Acad. Sci. USA 2010, 107, 6264–6269.CrossRefGoogle Scholar
  48. [48]
    Elnathan, R.; Delalat, B.; Brodoceanu, D.; Alhmoud, H.; Harding, F. J.; Buehler, K.; Nelson, A.; Isa, L.; Kraus, T.; Voelcker, N. H. Maximizing transfection efficiency of vertically aligned silicon nanowire arrays. Adv. Funct. Mater. 2015, 25, 7215–7225.CrossRefGoogle Scholar
  49. [49]
    Liu, D. D.; Yi, C. Q.; Wang, K. Q.; Fong, C.-C.; Wang, Z. K.; Lo, P. K.; Sun, D.; Yang, M. S. Reorganization of cytoskeleton and transient activation of Ca2+ channels in mesenchymal stem cells cultured on silicon nanowire arrays. ACS Appl. Mater. Interfaces 2013, 5, 13295–13304.CrossRefGoogle Scholar
  50. [50]
    Kuo, S.W.; Lin, H.I.; Hui-Chun Ho, J.; Shih, Y.-R. V.; Chen, H.F.; Yen, T.J.; Lee, O. K. Regulation of the fate of human mesenchymal stem cells by mechanical and stereo-topog-raphical cues provided by silicon nanowires. Biomaterials 2012, 33, 5013–5022.CrossRefGoogle Scholar
  51. [51]
    Nair, B. G.; Hagiwara, K.; Ueda, M.; Yu, H. H.; Tseng, H.-R.; Ito, Y. High density of aligned nanowire treated with polydopamine for efficient gene silencing by siRNA according to cell membrane perturbation. ACS Appl. Mater. Interfaces 2016, 8, 18693–18700.CrossRefGoogle Scholar
  52. [52]
    Bugnicourt, G.; Brocard, J.; Nicolas, A.; Villard, C. Nanoscale surface topography reshapes neuronal growth in culture. Langmuir 2014, 30, 4441–4449.CrossRefGoogle Scholar
  53. [53]
    Lowery, L. A.; van Vactor, D. The trip of the tip: Understanding the growth cone machinery. Nat. Rev. Mol. Cell Biol. 2009, 10, 332–343.CrossRefGoogle Scholar
  54. [54]
    Vitriol, E. A.; Zheng, J. Q. Growth cone travel in space and time: The cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 2012, 73, 1068–1081.CrossRefGoogle Scholar
  55. [55]
    Geiger, B.; Spatz, J. P.; Bershadsky, A. D. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 2009, 10, 21–33.CrossRefGoogle Scholar
  56. [56]
    Koch, D.; Rosoff, W. J.; Jiang, J. J.; Geller, H. M.; Urbach, J. S. Strength in the periphery: Growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys. J. 2012, 102, 452–460.CrossRefGoogle Scholar
  57. [57]
    Gilles, S.; Winter, S.; Michael, K. E.; Meffert, S. H.; Li, P. G.; Greben, K.; Simon, U.; Offenhäusser, A.; Mayer, D. Control of cell adhesion and neurite outgrowth by patterned gold nanoparticles with tunable attractive or repulsive surface properties. Small 2012, 8, 3357–3367.CrossRefGoogle Scholar
  58. [58]
    Lamoureux, P.; Ruthel, G.; Buxbaum, R. E.; Heidemann, S. R. Mechanical tension can specify axonal fate in hippocampal neurons. J. Cell Biol. 2002, 159, 499–508.CrossRefGoogle Scholar
  59. [59]
    Bard, L.; Boscher, C.; Lambert, M.; Mège, R.-M.; Choquet, D.; Thoumine, O. A molecular clutch between the actin flow and N-cadherin adhesions drives growth cone migration. J. Neurosci. 2008, 28, 5879–5890.CrossRefGoogle Scholar
  60. [60]
    Athamneh, A. I. M.; Suter, D. M. Quantifying mechanical force in axonal growth and guidance. Front. Cell. Neurosci. 2015, 9, 359.CrossRefGoogle Scholar
  61. [61]
    Suter, D. M.; Miller, K. E. The emerging role of forces in axonal elongation. Prog. Neurobiol. 2011, 94, 91–101.CrossRefGoogle Scholar
  62. [62]
    Chazeau, A.; Garcia, M.; Czöndör, K.; Perrais, D.; Tessier, B.; Giannone, G.; Thoumine, O. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines. Mol. Biol. Cell 2015, 26, 859–873.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Seong-Min Kim
    • 1
  • Seyeong Lee
    • 1
  • Dongyoon Kim
    • 1
  • Dong-Hee Kang
    • 1
  • Kisuk Yang
    • 2
  • Seung-Woo Cho
    • 2
  • Jin Seok Lee
    • 3
  • Insung S. Choi
    • 4
  • Kyungtae Kang
    • 5
  • Myung-Han Yoon
    • 1
  1. 1.School of Materials Science and EngineeringGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
  2. 2.Department of BiotechnologyYonsei UniversitySeoulRepublic of Korea
  3. 3.Department of ChemistrySookmyung Women’s UniversitySeoulRepublic of Korea
  4. 4.Center for Cell-Encapsulation Research, Department of ChemistryKAISTDaejeonRepublic of Korea
  5. 5.Department of Applied ChemistryKyung Hee UniversityYongin, GyeonggiRepublic of Korea

Personalised recommendations