Skip to main content
Log in

In situ transformation of Cu2O@MnO2 to Cu@Mn(OH)2 nanosheet-on-nanowire arrays for efficient hydrogen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of new non-precious metal catalysts and understanding the origin of their activity for the hydrogen evolution reaction (HER) are essential for rationally designing highly active low-cost catalysts as alternatives to state-of-the-art precious metal catalysts. Herein, manganese oxide/hydroxide was demonstrated as a highly active electrocatalysts for the HER by fabricating MnO2 nanosheets coated with Cu2O nanowire arrays (Cu2O@MnO2 NW@NS) on Cu foam followed by an in situ chronopotentiometry (CP) treatment. It was discovered that the in situ transformation of Cu2O@MnO2 into Cu@Mn(OH)2 NW@NS by the CP treatment drastically boosted the catalytic activity for the HER due to an enhancement of its intrinsic activity. Together with the benefits from such three-dimensional (3D) core–shell arrays for exposing more accessible active sites and efficient mass and electron transfers, the resulting Cu@Mn(OH)2 NW@NS exhibited excellent HER activity and outstanding durability in terms of a low overpotential of 132 mV vs. RHE at 10 mA/cm2. Overall, we expect these findings to generate new opportunities for the exploration of other Mn-based nanomaterials as efficient electrocatalysts and enable further understanding of their catalytic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P. D.; Guillet, N.; Métayé, R.; Fihri, A.; Palacin, S.; Fontecave, M. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 2009, 326, 1384–1387.

    Article  Google Scholar 

  2. Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

    Article  Google Scholar 

  3. Warren, S. C.; Voïtchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Grätzel, M. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 2013, 12, 842–849.

    Article  Google Scholar 

  4. Karunadasa, H. I.; Chang, C. J.; Long, J. R. A molecular molybdenum-oxo catalyst for generating hydrogen from water. Nature 2010, 464, 1329–1333.

    Article  Google Scholar 

  5. Xu, Y. T.; Xiao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. A.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.

    Article  Google Scholar 

  6. Wang, J.; Liu, D. F.; Qi, X. Q.; Xiong, K.; Li, L.; Wei, Z. D. Insight into the effect of CaMnO3 support on the catalytic performance of platinum catalysts. Chem. Eng. Sci. 2015, 135, 179–186.

    Article  Google Scholar 

  7. Yin, H. J.; Zhao, S. L.; Zhao, K.; Muqsit, A.; Tang, H. J.; Chang, L.; Zhao, H. J.; Gao, Y.; Tang, Z. Y. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat. Commun. 2015, 6, 6430.

    Article  Google Scholar 

  8. Song, J. G.; Ryu, G. H.; Lee, S. J.; Sim, S.; Lee, C. W.; Choi, T.; Jung, H.; Kim, Y.; Lee, Z.; Myoung, J. M. et al. Controllable synthesis of molybdenum tungsten disulfide alloy for vertically composition-controlled multilayer. Nat. Commun. 2015, 6, 7817.

    Article  Google Scholar 

  9. Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(I) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.

    Article  Google Scholar 

  10. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963–969.

    Article  Google Scholar 

  11. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  12. Cheng, N.; Norouzi Banis, M.; Liu, J.; Riese, A.; Mu, S. C.; Li, R. Y.; Sham, T.-K.; Sun, X. L. Atomic scale enhancement of metal-support interactions between Pt and ZrC for highly stable electrocatalysts. Energy Environ. Sci. 2015, 8, 1450–1455.

    Article  Google Scholar 

  13. Zhou, X. L.; Liu, Y.; Ju, H. X.; Pan, B. C.; Zhu, J. F.; Ding, T.; Wang, C. D.; Yang, Q. Design and epitaxial growth of MoSe2–NiSe vertical heteronanostructures with electronic modulation for enhanced hydrogen evolution reaction. Chem. Mater. 2016, 28, 1838–1846.

    Article  Google Scholar 

  14. Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K.; Abild-Pedersen, F.; Nørskov, J. K.; Cui, Y. Transition-metal doped edge sites in vertically aligned MoS2 catalysts for enhanced hydrogen evolution. Nano Res. 2015, 8, 566–575.

    Article  Google Scholar 

  15. Sivanantham, A.; Ganesan, P.; Shanmugam, S. Hierarchical NiCo2S4 nanowire arrays supported on Ni foam: An efficient and durable bifunctional electrocatalyst for oxygen and hydrogen evolution reactions. Adv. Funct. Mater. 2016, 26, 4661–4672.

    Article  Google Scholar 

  16. Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R.; Dai, H. J. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921–928.

    Article  Google Scholar 

  17. Liu, B.; Zhao, Y.-F.; Peng, H.-Q.; Zhang, Z.-Y.; Sit, C.-K.; Yuen, M.-F.; Zhang, T.-R.; Lee, C.-S.; Zhang, W.-J. Nickel–cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: An all-pH highly efficient integrated electrocatalyst for hydrogen evolution. Adv. Mater. 2017, 29, 1606521.

    Article  Google Scholar 

  18. Ma, L. B.; Hu, Y.; Chen, R. P.; Zhu, G. Y.; Chen, T.; Lv, H. L.; Wang, Y. R.; Liang, J.; Liu, H. X.; Yan, C. Z. et al. Self-assembled ultrathin NiCo2S4 nanoflakes grown on Ni foam as high-performance flexible electrodes for hydrogen evolution reaction in alkaline solution. Nano Energy 2016, 24, 139–147.

    Article  Google Scholar 

  19. Zhang, X.; Zhang, Y.; Yu, B.-B.; Yin, X.-L.; Jiang, W.-J.; Jiang, Y.; Hu, J.-S.; Wan, L.-J. Physical vapor deposition of amorphous MoS2 nanosheet arrays on carbon cloth for highly reproducible large-area electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 19277–19281.

    Article  Google Scholar 

  20. Chen, Y.-Y.; Zhang, Y.; Jiang, W.-J.; Zhang, X.; Dai, Z. H.; Wan, L.-J.; Hu, J.-S. Pomegranate-like N,P-doped Mo2C@C nanospheres as highly active electrocatalysts for alkaline hydrogen evolution. ACS Nano 2016, 10, 8851–8860.

    Article  Google Scholar 

  21. Kuang, M.; Han, P.; Wang, Q. H.; Li, J.; Zheng, G. F. CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting. Adv. Funct. Mater. 2016, 26, 8555–8561.

    Article  Google Scholar 

  22. Li, Y. H.; Liu, P. F.; Pan, L. F.; Wang, H. F.; Yang, Z. Z.; Zheng, L. R.; Hu, P.; Zhao, H. J.; Gu, L.; Yang, H. G. Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 2015, 6, 8064.

    Article  Google Scholar 

  23. Yan, X. D.; Tian, L. H.; He, M.; Chen, X. B. Threedimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015, 15, 6015–6021.

    Article  Google Scholar 

  24. Xu, Y.-F.; Gao, M.-R.; Zheng, Y.-R.; Jiang, J.; Yu, S.-H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

    Article  Google Scholar 

  25. Gong, M.; Zhou, W.; Tsai, M.-C.; Zhou, J. G.; Guan, M. Y.; Lin, M.-C.; Zhang, B.; Hu, Y. F.; Wang, D.-Y.; Yang, J. et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 2014, 5, 4695.

    Article  Google Scholar 

  26. Suib, S. L. Porous manganese oxide octahedral molecular sieves and octahedral layered materials. Acc. Chem. Res. 2008, 41, 479–487.

    Article  Google Scholar 

  27. Xu, G.-L.; Xu, Y.-F.; Fang, J.-C.; Fu, F.; Sun, H.; Huang, L.; Yang, S. H.; Sun, S.-G. Facile synthesis of hierarchical micro/nanostructured MnO material and its excellent lithium storage property and high performance as anode in a MnO/ LiNi0.5Mn1.5O4–δ lithium ion battery. ACS Appl. Mater. Interfaces 2013, 5, 6316–6323.

    Article  Google Scholar 

  28. Zhang, K. J.; Han, P. X.; Gu, L.; Zhang, L. X.; Liu, Z. H.; Kong, Q. S.; Zhang, C. J.; Dong, S. M.; Zhang, Z. Y.; Yao, J. H. et al. Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 658–664.

    Article  Google Scholar 

  29. Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.

    Article  Google Scholar 

  30. Liang, S. H.; Teng, F.; Bulgan, G.; Zong, R. L.; Zhu, Y. F. Effect of phase structure of MnO2 nanorod catalyst on the activity for CO oxidation. J. Phys. Chem. C 2008, 112, 5307–5315.

    Article  Google Scholar 

  31. Pinaud, B. A.; Chen, Z. B.; Abram, D. N.; Jaramillo, T. F. Thin films of sodium birnessite-type MnO2: Optical properties, electronic band structure, and solar photoelectrochemistry. J. Phys. Chem. C 2011, 115, 11830–11838.

    Article  Google Scholar 

  32. Robinson, D. M.; Go, Y. B.; Mui, M.; Gardner, G.; Zhang, Z. J.; Mastrogiovanni, D.; Garfunkel, E.; Li, J.; Greenblatt, M.; Dismukes, G. C. Photochemical water oxidation by crystalline polymorphs of manganese oxides: Structural requirements for catalysis. J. Am. Chem. Soc. 2013, 135, 3494–3501.

    Article  Google Scholar 

  33. Takashima, T.; Hashimoto, K.; Nakamura, R. Inhibition of charge disproportionation of MnO2 electrocatalysts for efficient water oxidation under neutral conditions. J. Am. Chem. Soc. 2012, 134, 18153–18156.

    Article  Google Scholar 

  34. Indra, A.; Menezes, P. W.; Zaharieva, I.; Baktash, E.; Pfrommer, J.; Schwarze, M.; Dau, H.; Driess, M. Active mixed-valent MnOx water oxidation catalysts through partial oxidation (corrosion) of nanostructured MnO particles. Angew. Chem., Int. Ed. 2013, 52, 13206–13210.

    Article  Google Scholar 

  35. Zhou, F. L.; Izgorodin, A.; Hocking, R. K.; Spiccia, L.; MacFarlane, D. R. Electrodeposited MnOx films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2012, 2, 1013–1021.

    Article  Google Scholar 

  36. Su, H. Y.; Gorlin, Y.; Man, I. C.; Calle-Vallejo, F.; Nørskov, J. K.; Jaramillo, T. F.; Rossmeisl, J. Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis. Phys. Chem. Chem. Phys. 2012, 14, 14010–14022.

    Article  Google Scholar 

  37. El-Sawy, A. M.; King’ondu, C. K.; Kuo, C. H.; Kriz, D. A.; Guild, C. J.; Meng, Y. T.; Frueh, S. J.; Dharmarathna, S.; Ehrlich, S. N.; Suib, S. L. X-ray absorption spectroscopic study of a highly thermally stable manganese oxide octahedral molecular sieve (OMS-2) with high oxygen reduction reaction activity. Chem. Mater. 2014, 26, 5752–5760.

    Article  Google Scholar 

  38. Xiao, W.; Wang, D. L.; Lou, X. W. Shape-controlled synthesis of MnO2 nanostructures with enhanced electrocatalytic activity for oxygen reduction. J. Phys. Chem. C 2010, 114, 1694–1700.

    Article  Google Scholar 

  39. Xiao, Y. P.; Jiang, W. J.; Wan, S.; Zhang, X.; Hu, J. S.; Wei, Z. D.; Wan, L. J. Self-deposition of Pt nanocrystals on Mn3O4 coated carbon nanotubes for enhanced oxygen reduction electrocatalysis. J. Mater. Chem. A 2013, 1, 7463–7468.

    Article  Google Scholar 

  40. Li, L.; Feng, X. H.; Nie, Y.; Chen, S. G.; Shi, F.; Xiong, K.; Ding, W.; Qi, X. Q.; Hu, J. S.; Wei, Z. D. et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2. ACS Catal. 2015, 5, 4825–4832.

    Article  Google Scholar 

  41. Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure–property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electro-chemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

    Article  Google Scholar 

  42. Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F. In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction. J. Am. Chem. Soc. 2013, 135, 8525–8534.

    Article  Google Scholar 

  43. Ray, C.; Dutta, S.; Negishi, Y.; Pal, T. A new stable Pd-Mn3O4 nanocomposite as an efficient electrocatalyst for the hydrogen evolution reaction. Chem. Commun. 2016, 52, 6095–6098.

    Article  Google Scholar 

  44. Cheng, F. Y.; Su, Y.; Liang, J.; Tao, Z. L.; Chen, J. MnO2- based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem. Mater. 2010, 22, 898–905.

    Article  Google Scholar 

  45. Hou, Y.; Cheng, Y. W.; Hobson, T.; Liu, J. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/ conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett. 2010, 10, 2727–2733.

    Article  Google Scholar 

  46. Chen, P.-C.; Shen, G. Z.; Shi, Y.; Chen, H. T.; Zhou, C. W. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

    Article  Google Scholar 

  47. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  48. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  49. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  Google Scholar 

  50. Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

    Article  Google Scholar 

  51. Zhang, W.; Wen, X.; Yang, S.; Berta, Y.; Wang, Z. L. Single-crystalline scroll-type nanotube arrays of copper hydroxide synthesized at room temperature. Adv. Mater. 2003, 15, 822–825.

    Article  Google Scholar 

  52. Jin, X. B.; Zhou, W. Z.; Zhang, S. W.; Chen, G. Z. Nanoscale microelectrochemical cells on carbon nanotubes. Small 2007, 3, 1513–1517.

    Article  Google Scholar 

  53. Yan, J.; Fan, Z. J.; Wei, T.; Qian, W. Z.; Zhang, M. L.; Wei, F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon 2010, 48, 3825–3833.

    Article  Google Scholar 

  54. Zhao, X. D.; Fan, H. M.; Luo, J.; Ding, J.; Liu, X. Y.; Zou, B. S.; Feng, Y. P. Electrically adjustable, super adhesive force of a superhydrophobic aligned MnO2 nanotube membrane. Adv. Funct. Mater. 2011, 21, 184–190.

    Article  Google Scholar 

  55. Julien, C.; Massot, M.; Baddour-Hadjean, R.; Franger, S.; Bach, S.; Pereira-Ramos, J. P. Raman spectra of birnessite manganese dioxides. Solid State Ionics 2003, 159, 345–356.

    Article  Google Scholar 

  56. Cheng, S.; Yang, L. F.; Chen, D. C.; Ji, X.; Jiang, Z. J.; Ding, D.; Liu, M. L. Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy. Nano Energy 2014, 9, 161–167.

    Article  Google Scholar 

  57. Audi, A. A.; Sherwood, P. M. A. Valence-band X-ray photoelectron spectroscopic studies of manganese and its oxides interpreted by cluster and band structure calculations. Surf. Interface Anal. 2002, 33, 274–282.

    Article  Google Scholar 

  58. Huang, H. W.; Yu, Q.; Peng, X. S.; Ye, Z. Z. Single-unitcell thick Mn3O4 nanosheets. Chem. Commun. 2011, 47, 12831–12833.

    Article  Google Scholar 

  59. Portehault, D.; Cassaignon, S.; Baudrin, E.; Jolivet, J. P. Structural and morphological control of manganese oxide nanoparticles upon soft aqueous precipitation through MnO4 /Mn2+ reaction. J. Mater. Chem. 2009, 19, 2407–2416.

    Article  Google Scholar 

  60. Oku, M.; Hirokawa, K.; Ikeda, S. X-ray photoelectron spectroscopy of manganese–oxygen systems. J. Electron Spectrosc. Relat. Phenom. 1975, 7, 465–473.

    Article  Google Scholar 

  61. Chigane, M.; Ishikawa, M. Manganese oxide thin film preparation by potentiostatic electrolyses and electrochromism. J. Electrochem. Soc. 2000, 147, 2246–2251.

    Article  Google Scholar 

  62. Brown, K. A.; He, S.; Eichelsdoerfer, D. J.; Huang, M. C.; Levy, I.; Lee, H.; Ryu, S.; Irvin, P.; Mendez-Arroyo, J.; Eom, C.-B. et al. Giant conductivity switching of LaAlO3/SrTiO3 heterointerfaces governed by surface protonation. Nat. Commun. 2016, 7, 10681–10686.

    Article  Google Scholar 

  63. Cheng, J.; Lu, Y.; Qiu, K. W.; Yan, H. L.; Xu, J. Y.; Han, L.; Liu, X. M.; Luo, J. S.; Kim, J. K.; Luo, Y. S. Hierarchical core/shell NiCo2O4@NiCo2O4 nanocactus arrays with dualfunctionalities for highperformance supercapacitors and Li-ion batteries. Sci. Rep. 2015, 5, 12099.

    Article  Google Scholar 

  64. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jørgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Nørskov, J. K. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J. Am. Chem. Soc. 2005, 127, 5308–5309.

    Article  Google Scholar 

  65. Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Basic Research Program of China (No. 2015CB932302), the National Key Research and Development Program of China (No. 2016YFB0101200), the National Natural Science Foundation of China (Nos. 91645123, 21573249, 21703257 and 21773263), and the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020100). We thank Dr. Z. J. Zhao and Prof. F. Liu at the Center for Analysis and Testing, ICCAS for their help for the XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Zhang or Jinsong Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhang, X., Jiang, W. et al. In situ transformation of Cu2O@MnO2 to Cu@Mn(OH)2 nanosheet-on-nanowire arrays for efficient hydrogen evolution. Nano Res. 11, 1798–1809 (2018). https://doi.org/10.1007/s12274-017-1798-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1798-6

Keywords

Navigation