Skip to main content
Log in

Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

An anomalous enhancement of fluorescence of carbon dots (CDs) was observed via lanthanum (La) doping. La-doped CDs (La-CDs) were prepared through microwave pyrolysis within 4 min. With La3+ doping, the emission band shifted from blue to green although La3+ is non-fluorescent. The quantum yield and fluorescence lifetime improved by about 20% and 35%, respectively. All experiment results indicate that La3+ doping is an effective way to tune fluorescence and improve the performance of CDs. Another unique attribute of La-CDs is high sensitivity to Fe3+. The La-CD-based fluorescence probe was established and used for sensitive and selective detection of Fe3+ with a limit of detection of 91 nmol/L. The proposed fluorescence probe also was successfully employed to visualize intracellular Fe3+ in live HeLa cells through cell imaging. It was also shown that yttrium exhibited the same fluorescence enhancement effect as La. The results may provide a new route for preparing CDs with special properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wolfbeis, O. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 44, 4743–4768.

    Article  Google Scholar 

  2. Yao, J.; Yang, M.; Duan, Y. X. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178.

    Article  Google Scholar 

  3. Guan, W. J.; Zhou, W. J.; Lu, J.; Lu, C. Luminescent films for chemo- and biosensing. Chem. Soc. Rev. 2015, 44, 6981–7009.

    Article  Google Scholar 

  4. Wang, F.; Han, Y.; Lim, C. S.; Lu, Y. H.; Wang, J.; Xu, J.; Chen, H. Y.; Zhang, C.; Hong, M. H.; Liu, X. G. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065.

    Article  Google Scholar 

  5. Su, L. T.; Karuturi, S. K.; Luo, J. S.; Liu, L. J.; Liu, X. F.; Guo, J.; Sum, T. C.; Deng, R. R.; Fan, H. J.; Liu, X. G. et al. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 2013, 25, 1603–1607.

    Article  Google Scholar 

  6. Johnson, N. J. J.; He, S.; Diao, S.; Chan, E. M.; Dai, H. J.; Almutairi, A. Direct evidence for coupled surface and concentration quenching dynamics in lanthanide-doped nanocrystals. J. Am. Chem. Soc. 2017, 139, 3275–3282.

    Article  Google Scholar 

  7. Xu, X. Y.; Ray, R.; Gu, Y. L.; Ploehn, H. J.; Gearheart, L.; Raker, K.; Scrivens. W. A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737.

    Article  Google Scholar 

  8. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  9. Li, H. T.; Kang, Z. H.; Liu, Y.; Lee, S. T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 2012, 22, 24230–24253.

    Article  Google Scholar 

  10. Yan, Y. H.; Yu, H.; Zhang, K.; Sun, M. T.; Zhang, Y. J.; Wang, X. K.; Wang, S. H. Dual-emissive nanohybrid of carbon dots and gold nanoclusters for sensitive determination of mercuric ions. Nano Res. 2016, 9, 2088–2096.

    Article  Google Scholar 

  11. Wang, N.; Fan, H.; Sun, J. C.; Han, Z. W.; Dong, J.; Ai, S. Y. Fluorine-doped carbon nitride quantum dots: Ethylene glycol-assisted synthesis, fluorescent properties, and their application for bacterial imaging. Carbon 2016, 109, 141–148.

    Article  Google Scholar 

  12. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  13. Kim, S.; Choi, Y.; Park, G.; Won, C.; Park, Y. J.; Lee, Y.; Kim, B. S.; Min, D. H. Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 2017, 10, 503–519.

    Article  Google Scholar 

  14. Guo, X.; Wang, C. F.; Yu, Z. Y.; Chen, L.; Chen, S. Facile access to versatile fluorescent carbon dots toward lightemitting diodes. Chem. Commun. 2012, 48, 2692–2694.

    Article  Google Scholar 

  15. Hu, S. L.; Chang, Q.; Lin, K.; Yang, J. L. Tailoring surface charge distribution of carbon dots through heteroatoms for enhanced visible-light photocatalytic activity. Carbon 2016, 105, 484–489.

    Article  Google Scholar 

  16. Qu, D.; Zheng, M.; Du, P.; Zhou, Y.; Zhang, L. G.; Li, D.; Tan, H. Q.; Zhao, Z.; Xie, Z. G.; Sun, Z. C. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 2013, 5, 12272–12277.

    Article  Google Scholar 

  17. Singh, S.; Mishra, A.; Kumari, R.; Sinha, K. K.; Singh, M. K.; Das, P. Carbon dots assisted formation of DNA hydrogel for sustained release of drug. Carbon 2017, 114, 169–176.

    Article  Google Scholar 

  18. Liu, C. J.; Zhang, P.; Zhai, X. Y.; Tian, F.; Li, W. C.; Yang, J. H.; Liu, Y.; Wang, H. B.; Wang, W.; Liu, W. G. Nanocarrier for gene delivery and bioimaging based on carbon dots with PEI-passivation enhanced fluorescence. Biomaterials 2012, 33, 3604–3613.

    Article  Google Scholar 

  19. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

    Article  Google Scholar 

  20. Yang, S. T.; Cao, L.; Luo, P. G.; Lu, F. S.; Wang, X.; Wang, H. F.; Meziani, M. J.; Liu, Y. F. Qi, G.; Sun, Y. P. Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 2009, 131, 11308–11309.

    Article  Google Scholar 

  21. Tian, L.; Ghosh, D.; Chen, W.; Pradhan, S.; Chang, X. J.; Chen, S. W. Nanosized carbon particles from natural gas soot. Chem. Mater. 2009, 21, 2803–2809.

    Article  Google Scholar 

  22. Zhao, Q. L.; Zhang, Z. L.; Huang, B. H.; Peng, J.; Zhang, M.; Pang, D. W. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 2008, 5116–5118.

    Google Scholar 

  23. Lu, J.; Yang, J. X.; Wang, J. Z.; Lim, A.; Wang, S.; Loh, K. P. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 2009, 3, 2367–2375.

    Article  Google Scholar 

  24. Wang, Z. G.; Fu, B. S.; Zou, S. W.; Duan, B.; Chang, C. Y.; Yang, B.; Zhou, X.; Zhang, L. N. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Res. 2016, 9, 214–223.

    Article  Google Scholar 

  25. Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem., Int. Ed. 2013, 52, 7800–7804.

    Article  Google Scholar 

  26. Liu, Y.; Xiao, N.; Gong, N. Q.; Wang, H.; Shi, X.; Gu, W.; Ye, L. One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon 2014, 68, 258–264.

    Article  Google Scholar 

  27. Xu, M. H.; He, G. L.; Li, Z. H.; He, F. J.; Gao, F.; Su, Y. J.; Zhang, L. Y.; Yang, Z.; Zhang, Y. F. A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale 2014, 6, 10307–10315.

    Article  Google Scholar 

  28. Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555.

    Article  Google Scholar 

  29. Hens, Z. Economical routes to colloidal nanocrystals. Science 2015, 348, 1211–1212.

    Article  Google Scholar 

  30. Song, J. Z.; Li, J. H.; Li, X. M.; Xu, L. M.; Dong, Y. H.; Zeng, H. B. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides [CsPbX3]. Adv. Mater. 2015, 27, 7162–7167.

    Article  Google Scholar 

  31. Wang, W.; Li, Y. M.; Cheng, L.; Cao, Z. Q.; Liu, W. G. Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J. Mater. Chem. B 2014, 2, 46–48.

    Article  Google Scholar 

  32. Yoo, J. M.; Kang, J. H.; Hong, B. H. Graphene-based nanomaterials for versatile imaging studies. Chem. Soc. Rev. 2015, 44, 4835–4852.

    Article  Google Scholar 

  33. Wang, X.; Cao, L.; Yang, S. T.; Lu, F. S.; Meziani, M. J.; Tian, L. L.; Sun, K. W.; Bloodgood, M. A.; Sun, Y. P. Bandgap-like strong fluorescence in functionalized carbon nanoparticles. Angew. Chem., Int. Ed. 2010, 49, 5310–5314.

    Article  Google Scholar 

  34. Wu, P.; Yan, X. P. Doped quantum dots for chemo/biosensing and bioimaging. Chem. Soc. Rev. 2013, 42, 5489–5521.

    Article  Google Scholar 

  35. Xu, Q.; Kuang, T. R.; Liu, Y.; Cai, L. L.; Peng, X. F.; Sreeprasad, T. S.; Zhao, P.; Yue, Z. Q.; Li, N. Heteroatomdoped carbon dots: Synthesis, characterization, properties, photoluminescence mechanism and biological applications. J. Mater. Chem. B 2016, 4, 7204–7219.

    Article  Google Scholar 

  36. Song, Z. Q.; Quan, F. Y.; Xu, Y. H.; Liu, M. L.; Cui, L.; Liu, J. Q. Multifunctional N, S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon 2016, 104, 169–178.

    Article  Google Scholar 

  37. Xu, Q.; Liu, Y.; Su, R. G.; Cai, L. L.; Li, B. F.; Zhang, Y. Y.; Zhang, L. Z.; Wang, Y. J.; Wang, Y.; Li, N. et al. Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: An integrative experimental-theoretical consideration. Nanoscale 2016, 8, 17919–17927.

    Article  Google Scholar 

  38. Prodi, L.; Rampazzo, E.; Rastrelli, F.; Speghini, A.; Zaccheroni, N. Imaging agents based on lanthanide doped nanoparticles. Chem. Soc. Rev. 2015, 44, 4922–4952.

    Article  Google Scholar 

  39. Zhong, J. Y.; Zhuang, W. D.; Xing, X. R.; Wang, L. G.; Li, Y. F.; Zheng, Y. L.; Liu, R. H.; Liu, Y. H.; Hu, Y. S. Blue-shift of spectrum and enhanced luminescent properties of YAG: Ce3+ phosphor induced by small amount of La3+ incorporation. J. Alloys Compd. 2016, 674, 93–97.

    Article  Google Scholar 

  40. Lu, W. B.; Qin, X. Y.; Liu, S.; Chang, G. H.; Zhang, Y. W.; Luo, Y. L.; Asiri, A. M.; Al-Youbi, A. O.; Sun, X. P. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 2012, 84, 5351–5357.

    Article  Google Scholar 

  41. Bahlakeh, G.; Ramezanzadeh, B. A detailed molecular dynamics simulation and experimental investigation on the interfacial bonding mechanism of an epoxy adhesive on carbon steel sheets decorated with a novel cerium-lanthanum nanofilm. ACS Appl. Mater. Interfaces 2017, 9, 17536–17551.

    Article  Google Scholar 

  42. Arenas, M. A.; García, I.; de Damborenea, J. X-ray photoelectron spectroscopy study of the corrosion behaviour of galvanised steel implanted with rare earths. Corros. Sci. 2004, 46, 1033–1049.

    Article  Google Scholar 

  43. Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

    Article  Google Scholar 

  44. Dang, S.; Ma, E.; Sun, Z. M.; Zhang, H. J. A layer-structured Eu-MOF as a highly selective fluorescent probe for Fe3+ detection through a cation-exchange approach. J. Mater. Chem. 2012, 22, 16920–16926.

    Article  Google Scholar 

  45. Cui, X. B.; Wang, Y. L.; Liu, J.; Yang, Q. Y.; Zhang, B.; Gao, Y.; Wang, Y.; Lu, G. Y. Dual functional N- and S-co-doped carbon dots as the sensor for temperature and Fe3+ ions. Sens. Actuators B 2017, 242, 1272–1280.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21375005, 21575054 and 21527808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiayan Wang or Qiaosheng Pu.

Electronic supplementary material

12274_2017_1751_MOESM1_ESM.pdf

Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Sun, X., Wang, Z. et al. Anomalous enhancement of fluorescence of carbon dots through lanthanum doping and potential application in intracellular imaging of ferric ion. Nano Res. 11, 1369–1378 (2018). https://doi.org/10.1007/s12274-017-1751-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1751-8

Keywords

Navigation