Skip to main content
Log in

Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Advanced biocompatible and robust platforms equipped with diverse properties are highly required in biomedical imaging applications for the early detection of atherosclerotic vascular disease and cancers. Designing nanohybrids composed of noble metals and fluorescent materials is a new way to perform multimodal imaging to overcome the limitations of single-modality counterparts. Herein, we propose the novel design of a multimodal contrast agent; namely, an enhanced nanohybrid comprising gold nanorods (GNRs) and carbon dots (CDs) with silica (SiO2) as a bridge. The nanohybrid (GNR@SiO2@CD) construction is based on covalent bonding between SiO2 and the silane-functionalized CDs, which links the GNRs with the CDs to form typical core–shell units. The novel structure not only retains and even highly improves the optical properties of the GNRs and CDs, but also possesses superior imaging performance in both diffusion reflection (DR) and fluorescence lifetime imaging microscopy (FLIM) measurements compared with bare GNRs or fluorescence dyes and CDs. The superior bioimaging properties of the GNR@SiO2@CD nanohybrids were successfully exploited for in vitro DR and FLIM measurements of macrophages within tissue-like phantoms, paving the way toward a theranostic contrast agent for atherosclerosis and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, Y. D.; Jia, C. X.; Huang, S.-W.; O’Donnell, M.; Gao, X. H. Multifunctional nanoparticles as coupled contrast agents. Nat. Commun. 2010, 1, 41.

    Article  Google Scholar 

  2. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

    Article  Google Scholar 

  3. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  Google Scholar 

  4. Niemeyer, C. M. Nanoparticles, proteins, and nucleic acids: Biotechnology meets materials science. Angew. Chem., Int. Ed. 2001, 40, 4128–4158.

    Article  Google Scholar 

  5. Kobayashi, H.; Koyama, Y.; Barrett, T.; Hama, Y.; Regino, C. A. S.; Shin, I. S.; Jang, B.-S.; Le, N.; Paik, C. H.; Choyke, P. L. et al. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging. ACS Nano 2007, 1, 258–264.

    Article  Google Scholar 

  6. Baker, M. Whole-animal imaging: The whole picture. Nature 2010, 463, 977–980.

    Article  Google Scholar 

  7. Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Au nanoparticles target cancer. Nano Today 2007, 2, 18–29.

    Article  Google Scholar 

  8. Tong, L.; Wei, Q. S.; Wei, A.; Cheng, J. X. Gold nanorods as contrast agents for biological imaging: Optical properties, surface conjugation and photothermal effects. Photochem. Photobiol. 2009, 85, 21–32.

    Article  Google Scholar 

  9. Fixler, D.; Ankri, R. Subcutaneous gold nanorods detection with diffusion reflection measurement. J. Biomed. Opt. 2013, 18, 061226.

    Article  Google Scholar 

  10. Fixler, D.; Zalevsky, Z. In vivo tumor detection using polarization and wavelength reflection characteristics of gold nanorods. Nano. Lett. 2013, 13, 6292–6296.

    Article  Google Scholar 

  11. Ankri, R.; Duadi, H.; Motiei, M.; Fixler, D. In-vivo tumor detection using diffusion reflection measurements of targeted gold nanorods—A quantitative study. J. Biophot. 2012, 5, 263–273.

    Article  Google Scholar 

  12. Ankri, R.; Meiri, A.; Lau, S. I.; Motiei, M.; Popovtzer, R.; Fixler, D. Intercoupling surface plasmon resonance and diffusion reflection measurements for real-time cancer detection. J. Biophot. 2013, 6, 188–196.

    Article  Google Scholar 

  13. Ankri, R.; Leshem-Lev, D.; Fixler, D.; Popovtzer, R.; Motiei, M.; Kornowski, R.; Hochhauser, E.; Lev, E. I. Gold nanorods as absorption contrast agents for the noninvasive detection of arterial vascular disorders based on diffusion reflection measurements. Nano Lett. 2014, 14, 2681–2687.

    Article  Google Scholar 

  14. Becker, W. Fluorescence lifetime imaging-techniques and applications. J. Microsc. 2012, 247, 119–136.

    Article  Google Scholar 

  15. Fixler, D.; Nayhoz, T.; Ray, K. Diffusion reflection and fluorescence lifetime imaging microscopy study of fluorophore-conjugated gold nanoparticles or nanorods in solid phantoms. ACS Photonics 2014, 1, 900–905.

    Article  Google Scholar 

  16. van Munster, E. B.; Gadella, T. W. J. Fluorescence lifetime imaging microscopy (FLIM). In Microscopy Techniques. Rietdorf, J., Ed.; Springer: Berlin Heidelberg, 2005; pp 143–175.

    Chapter  Google Scholar 

  17. Fixler, D.; Tirosh, R.; Zurgil, N.; Deutsch, M. Tracing apoptosis and stimulation in individual cells by fluorescence intensity and anisotropy decay. J. Biomed. Opt. 2005, 10, 034007.

    Article  Google Scholar 

  18. Ankri, R.; Ashkenazy, A.; Milstein, Y.; Brami, Y.; Olshinka, A.; Goldenberg-Cohen, N.; Popovtzer, A.; Fixler, D.; Hirshberg, A. Gold nanorods based air scanning electron microscopy and diffusion reflection imaging for mapping tumor margins in squamous cell carcinoma. ACS Nano 2016, 10, 2349–2356.

    Article  Google Scholar 

  19. Zhang, H.; Cheng, K.; Hou, Y. M.; Fang, Z.; Pan, Z. X.; Wu, W. J.; Hua, J. L.; Zhong, X. H. Efficient CdSe quantum dot-sensitized solar cells prepared by a postsynthesis assembly approach. Chem. Commun. 2012, 48, 11235–11237.

    Article  Google Scholar 

  20. Yang, Y. L.; An, F. F.; Liu, Z.; Zhang, X. J.; Zhou, M. J.; Li, W.; Hao, X. J.; Lee, C.-S.; Zhang, X. H. Ultrabright and ultrastable near-infrared dye nanoparticles for in vitro and in vivo bioimaging. Biomaterials 2012, 33, 7803–7809.

    Article  Google Scholar 

  21. Pang, R.; Zhou, S. Y.; Hu, X. J.; Xie, Z.; Liu, X. J.; Duadi, H.; Fixler, D. New diffusion reflection imaging system using gold nanorods coated with poly-(3,4-ethylenedioxythiophene). Opt. Mater. Express 2016, 6, 1238–1246.

    Article  Google Scholar 

  22. Lim, S. Y.; Shen, W.; Gao, Z. Q. Carbon quantum dots and their applications. Chem. Soc. Rev. 2015, 44, 362–381.

    Article  Google Scholar 

  23. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

    Article  Google Scholar 

  24. Wang, F.; Xie, Z.; Zhang, H.; Liu, C. Y.; Zhang, Y. G. Highly luminescent organosilane-functionalized carbon dots. Adv. Func. Mater. 2011, 21, 1027–1031.

    Article  Google Scholar 

  25. Xie, Z.; Wang, F.; Liu, C. Y. Organic–inorganic hybrid functional carbon dot gel glasses. Adv. Mater. 2012, 24, 1716–1721.

    Article  Google Scholar 

  26. Ankri, R.; Melzer, S.; Tarnok, A.; Fixler, D. Detection of gold nanorods uptake by macrophages using scattering analyses combined with diffusion reflection measurements as a potential tool for in vivo atherosclerosis tracking. Int. J. Nanomed. 2015, 10, 4437–4446.

    Google Scholar 

  27. Melzer, S.; Ankri, R.; Fixler, D.; Tarnok, A. Nanoparticle uptake by macrophages in vulnerable plaques for atherosclerosis diagnosis. J. Biophot. 2015, 8, 871–883.

    Article  Google Scholar 

  28. Deng, L.; Liu, L.; Zhu, C. Z.; Li, D.; Dong, S. J. Hybrid gold nanocube@ silica@ graphene-quantum-dot superstructures: Synthesis and specific cell surface protein imaging applications. Chem. Commun. 2013, 49, 2503–2505.

    Article  Google Scholar 

  29. Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.

    Article  Google Scholar 

  30. Ouhenia-Ouadahi, K.; Yasukuni, R.; Yu, P.; Laurent, G.; Pavageau, C.; Grand, J.; Guérin, J.; Léaustic, A.; Félidj, N.; Aubard, J. et al. Photochromic–fluorescent–plasmonic nanomaterials: Towards integrated three-component photoactive hybrid nanosystems. Chem. Commun. 2014, 50, 7299–7302.

    Article  Google Scholar 

  31. Lai, C. W.; Hsiao, J. K.; Chen, Y. C.; Chou, P. T. Spherical and anisotropic silica shell nanomaterials. In Nanotechnologies for the Life Sciences. Kumar, C., Ed.; Wiley-VCH Verlag GmbH & Co: Weinheim, 2009.

    Google Scholar 

  32. Li, X.; Qian, J.; Jiang, L.; He, S. L. Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection. Appl. Phys. Lett. 2009, 94, 063111.

    Article  Google Scholar 

  33. Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.

    Article  Google Scholar 

  34. Wang, K.; Zhang, X. L.; Niu, C. Y.; Wang, Y. Q. Templateactivated strategy toward one-step coating silica colloidal microspheres with sliver. ACS Appl. Mater. Interfaces 2014, 6, 1272–1278.

    Article  Google Scholar 

  35. Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H. Y.; Yang, B. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem., Int. Ed. 2013, 52, 3953–3957.

    Article  Google Scholar 

  36. Xu, J. B.; Zhao, T. S.; Liang, Z. X.; Zhu, L. D. Facile preparation of AuPt alloy nanoparticles from organometallic complex precursor. Chem. Mater. 2008, 20, 1688–1690.

    Article  Google Scholar 

  37. Wu, C. L.; Xu, Q.-H. Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors. Langmuir 2009, 25, 9441–9446.

    Article  Google Scholar 

  38. Fixler, D.; Ankri, R.; Kaplan, I.; Novikov, I.; Hirshberg, A. Diffusion reflection: A novel method for detection of oral cancer. J. Dent. Res. 2014, 93, 602–606.

    Article  Google Scholar 

  39. Barnoy, E. A.; Fixler, D.; Popovtzer, R.; Nayhoz, T.; Ray, K. An ultra-sensitive dual-mode imaging system using metal-enhanced fluorescence in solid phantoms. Nano Res. 2015, 8, 3912–3921.

    Article  Google Scholar 

  40. Turgeman, L.; Fixler, D. The influence of dead time related distortions on live cell fluorescence lifetime imaging (FLIM) experiments. J. Biophot. 2014, 7, 442–452.

    Article  Google Scholar 

  41. Li, Y.-Q.; Cao, S.-H.; Cai, W.-P.; Liu, Q.; Liu, X.-Q.; Weng, Y.-H. Directional fluorescence based on surface plasmoncoupling. In Reviews in Fluorescence 2015. Geddes, C. D., Ed.; Springer: Switzerland, 2016; pp 71–95.

    Chapter  Google Scholar 

  42. Jana, N. R.; Earhart, C.; Ying, J. Y. Synthesis of watersoluble and functionalized nanoparticles by silica coating. Chem. Mater. 2007, 19, 5074–5082.

    Article  Google Scholar 

  43. Foda, M. F.; Huang, L.; Shao, F.; Han, H.-Y. Biocompatible and highly luminescent near-infrared CuInS2/ZnS quantum dots embedded silica beads for cancer cell imaging. ACS Appl. Mater. Interfaces 2014, 6, 2011–2017.

    Article  Google Scholar 

  44. Wu, Q.; Chen, L.; Huang, L.; Wang, J.; Liu, J. W.; Hu, C.; Han, H. Y. Quantum dots decorated gold nanorod as fluorescent-plasmonic dual-modal contrasts agent for cancer imaging. Biosens. Bioelectron. 2015, 74, 16–23.

    Article  Google Scholar 

  45. Barbé, C.; Bartlett, J.; Kong, L.; Finnie, K.; Lin, H. Q.; Larkin, M.; Calleja, S.; Bush, A.; Calleja, G. Silica particles: A novel drug-delivery system. Adv. Mater. 2004, 16, 1959–1966.

    Article  Google Scholar 

  46. Tang, J.; Kong, B.; Wu, H.; Xu, M.; Wang, Y. C.; Wang, Y. L.; Zhao, D. Y.; Zheng, G. F. Carbon nanodots featuring efficient FRET for real-time monitoring of drug delivery and twophoton imaging. Adv. Mater. 2013, 25, 6569–6574.

    Article  Google Scholar 

  47. Liu, Y. L.; Yang, M.; Zhang, J. P.; Zhi, X.; Li, C.; Zhang, C. L.; Pan, F.; Wang, K.; Yang, Y. M.; de la Fuentea, J. M. et al. Martinez de la Fuentea, J.Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano. 2016, 10, 2375–2385.

    Article  Google Scholar 

  48. Fixler, D.; Garcia, J.; Zalevsky, Z.; Weiss, A.; Deutsch, M.. Speckle random coding for 2D super resolving fluorescent microscopic imaging. Micron 2007, 38, 121–128.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint NSFC-ISF Research Program (No. 51561145004), jointly funded by the National Natural Science Foundation of China and the Israel Science Foundation, and the President’s International Fellowship Initiative, Chinese Academy of Sciences (No. PIFI2015VTB041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dror Fixler or Zheng Xie.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, L., Hu, X. et al. Multimodal bioimaging based on gold nanorod and carbon dot nanohybrids as a novel tool for atherosclerosis detection. Nano Res. 11, 1262–1273 (2018). https://doi.org/10.1007/s12274-017-1739-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1739-4

Keywords

Navigation