Skip to main content
Log in

High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Although In2O3 nanofibers (NFs) are well-known candidates as active materials for next-generation, low-cost electronics, these NF based devices still suffer from high leakage current, insufficient on–off current ratios (Ion/Ioff), and large, negative threshold voltages (VTH), leading to poor device performance, parasitic energy consumption, and rather complicated circuit design. Here, instead of the conventional surface modification of In2O3 NFs, we present a one-step electrospinning process (i.e., without hot-press) to obtain controllable Mg-doped In2O3 NF networks to achieve high-performance enhancement-mode thin-film transistors (TFTs). By simply adjusting the Mg doping concentration, the device performance can be manipulated precisely. For the optimal doping concentration of 2 mol%, the devices exhibit a small VTH (3.2 V), high saturation current (1.1 × 10–4 A), large on/off current ratio (>108), and respectable peak carrier mobility (2.04 cm2/(V·s)), corresponding to one of the best device performances among all 1D metal-oxide NFs based devices reported so far. When high-κ HfOx thin films are employed as the gate dielectric, their electron mobility and VTH can be further improved to 5.30 cm2/(V·s) and 0.9 V, respectively, which demonstrates the promising prospect of these Mg-doped In2O3 NF networks for highperformance, large-scale, and low-power electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M. Logic gates and computation from assembled nanowire building blocks. Science 2001, 294, 1313–1317.

    Article  Google Scholar 

  2. Chuang, S.; Gao, Q.; Kapadia, R.; Ford, A. C.; Guo, J.; Javey, A. Ballistic InAs nanowire transistors. Nano Lett. 2012, 13, 555–558.

    Article  Google Scholar 

  3. Razavieh, A.; Mehrotra, S.; Singh, N.; Klimeck, G.; Janes, D.; Appenzeller, J. Utilizing the unique properties of nanowire MOSFETs for RF applications. Nano Lett. 2013, 13, 1549–1554.

    Article  Google Scholar 

  4. Duan, X. F.; Niu, C. M.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  Google Scholar 

  5. Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18–27.

    Article  Google Scholar 

  6. Thelander, C.; Agarwal, P.; Brongersma, S.; Eymery, J.; Feiner, L. F.; Forchel, A.; Scheffler, M.; Riess, W.; Ohlsson, B. J.; Gösele, U. et al. Nanowire-based one-dimensional electronics. Mater. Today 2006, 9, 28–35.

    Article  Google Scholar 

  7. Ko, H.; Zhang, Z. X.; Ho, J. C.; Takei, K.; Kapadia, R.; Chueh, Y. L.; Cao, W. Z.; Cruden, B. A.; Javey, A. Flexible carbon-nanofiber connectors with anisotropic adhesion properties. Small 2010, 6, 22–26.

    Article  Google Scholar 

  8. Ju, S; Li, J. F.; Liu, J.; Chen, P. C.; Ha, Y. G.; Ishikawa, F.; Chang, H.; Zhou, C. W.; Facchetti, W. A.; Janes, D. B. et al. Transparent active matrix organic light-emitting diode displays driven by nanowire transistor circuitry. Nano Lett. 2008, 8, 997–1004.

    Article  Google Scholar 

  9. Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P. D.; Zhou, C. W.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

    Article  Google Scholar 

  10. Lee, C.; Srisungsitthisunti, P.; Park, S.; Kim, S.; Xu, X. F.; Roy, K.; Janes, D. B.; Zhou, C. W.; Ju, S.; Qi, M. H. Control of current saturation and threshold voltage shift in indium oxide nanowire transistors with femtosecond laser annealing. ACS Nano 2011, 5, 1095–1101.

    Article  Google Scholar 

  11. Li, C.; Zhang, D.; Han, S.; Liu, X.; Tang, T.; Zhou, C. Diameter-controlled growth of single-crystalline In2O3 nanowires and their electronic properties. Adv. Mater. 2003, 15, 143–146.

    Article  Google Scholar 

  12. Su, M.; Yang, Z. Y.; Liao, L.; Zou, X. M.; Ho, J. C.; Wang, J. L.; Wang, J. L.; Hu, W. D.; Xiao, X. H.; Jiang, C. Z. et al. Side-gated In2O3 nanowire ferroelectric FETs for highperformance nonvolatile memory applications. Adv. Sci. 2016, 3, 1600078.

    Article  Google Scholar 

  13. Park, H.; Yoon, K. R.; Kim, S. K.; Kim, I. D.; Jin, J.; Kim, Y. H.; Bae, B. S. Highly conducting In2O3 nanowire network with passivating ZrO2 thin film for solution-processed field effect transistors. Adv. Electron. Mater. 2016, 2, 1600218.

    Article  Google Scholar 

  14. Ford, A. C.; Ho, J. C.; Chueh, Y. L.; Tseng, Y. C.; Fan, Z. Y.; Guo, J.; Bokor, J.; Javey, A. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 2009, 9, 360–365.

    Article  Google Scholar 

  15. Nikoobakht, B. Toward industrial-scale fabrication of nanowire-based devices. Chem. Mater. 2007, 19, 5279–5284.

    Article  Google Scholar 

  16. Xuan, Y.; Wu, Y. Q.; Ye, P. D. High-performance inversiontype enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 2008, 29, 294–296.

    Article  Google Scholar 

  17. Zhu, Z. T.; Suzuki, M.; Nagashima, K.; Yoshida, H.; Kanai, M.; Gang, M.; Anzai, H.; Zhuge, F.; Yong, H.; Boudot, M. et al. Rational concept for reducing growth temperature in vapor-liquid-solid process of metal oxide nanowires. Nano Lett. 2016, 16, 7495–7502.

    Article  Google Scholar 

  18. Zhang, H. D.; Yu, M.; Zhang, J. C.; Sheng, C. H.; Yan, X.; Han, W. P.; Liu, Y. C.; Chen, S.; Shen, G. Z.; Long, Y. Z. Fabrication and photoelectric properties of La-doped p-type ZnO nanofibers and crossed p–n homojunctions by electrospinning. Nanoscale 2015, 7, 10513–10518.

    Article  Google Scholar 

  19. Liu, S.; Liu, S. L.; Long, Y. Z.; Liu, L. Z.; Zhang, H. D.; Zhang, J. C.; Han, W. P.; Liu, Y. C. Fabrication of p-type ZnO nanofibers by electrospinning for field-effect and rectifying devices. Appl. Phys. Lett. 2014, 104, 042105.

    Article  Google Scholar 

  20. Kim, S.; Carpenter, P. D.; Jean, R. K.; Chen, H. T.; Zhou, C. W.; Ju, S.; Janes, D. B. Role of self-assembled monolayer passivation in electrical transport properties and flicker noise of nanowire transistors. ACS Nano 2012, 6, 7352–7361.

    Article  Google Scholar 

  21. Hong, W. K.; Sohn, J. I.; Hwang, D. K.; Kwon, S. S.; Jo, G.; Song, S.; Kim, S. M.; Ko, H. J.; Park, S. J.; Welland, M. E. et al. Tunable electronic transport characteristics of surfacearchitecture- controlled ZnO nanowire field effect transistors. Nano Lett. 2008, 8, 950–956.

    Article  Google Scholar 

  22. Zou, X. M.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z.; Xiong, Q. H. et al. Controllable electrical properties of metal-doped In2O3 nanowires for high-performance enhancement-mode transistors. ACS Nano 2013, 7, 804–810.

    Article  Google Scholar 

  23. Wang, F. Y.; Yip, S. P.; Dong, G. F.; Xiu, F.; Song, L. F.; Yang, Z. X.; Li. D. P.; Hung, T. F.; Han, N.; Ho, J. C. Manipulating III-V nanowire transistor performance via surface decoration of metal-oxide nanoparticles. Adv. Mater. Interface 2017, 4, 1700260.

    Article  Google Scholar 

  24. Zou, X. M.; Wang, J. L.; Liu, X. Q.; Wang, C. L.; Jiang, Y.; Wang, Y.; Xiao, X. H.; Ho, J. C.; Li, J. C.; Jiang, C. Z. et al. Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors. Nano Lett. 2013, 13, 3287–3292.

    Article  Google Scholar 

  25. Zhang, X. W.; Zhang, X. J.; Wang, L.; Wu, Y. M.; Wang, Y.; Gao, P.; Han, Y. Y.; Jie, J. S. ZnSe nanowire/Si p–n heterojunctions: Device construction and optoelectronic applications. Nanotechnology 2013, 24, 395201.

    Article  Google Scholar 

  26. Long, Y. Z.; Yu, M.; Sun, B.; Gu, C. Z.; Fan, Z. Y. Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 2012, 41, 4560–4580.

    Article  Google Scholar 

  27. Cao, J.; Dou, H. M.; Zhang, H.; Mei, H. X.; Liu, S.; Fei, T.; Wang, R.; Wang, L. J.; Zhang T. Controllable synthesis and HCHO-sensing properties of In2O3 micro/nanotubes with different diameters. Sens. Actuators B Chem. 2014, 198, 180–187.

    Article  Google Scholar 

  28. Liu, H. Q.; Reccius, C. H.; Craighead, H. G. Single electrospun regioregular poly(3-hexylthiophene) nanofiber field-effect transistor. Appl. Phys. Lett. 2005, 87, 253106.

    Article  Google Scholar 

  29. Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, R89–R106.

    Article  Google Scholar 

  30. Wu, H.; Lin, D. D.; Zhang, R.; Pan, W. ZnO nanofiber field-effect transistor assembled by electrospinning. J. Am. Ceram. Soc. 2008, 91, 656–659.

    Article  Google Scholar 

  31. Choi, S. H.; Jang, B. H.; Park, J. S.; Demadrille, R.; Tuller, H. L.; Kim, I. D. Low voltage operating field effect transistors with composite In2O3-ZnO-ZnGa2O4 nanofiber network as active channel layer. ACS Nano 2014, 8, 2318–2327.

    Article  Google Scholar 

  32. Gazquez, G. C.; Lei, S. D.; George, A.; Gullapalli, H.; Boukamp, B. A.; Ajayan, P. M.; ten Elshof, J. E. Low-cost, large-area, facile, and rapid fabrication of aligned ZnO nanowire device arrays. ACS Appl. Mater. Interfaces 2016, 8, 13466–13471.

    Article  Google Scholar 

  33. Zhao, C. H.; Huang, B. Y.; Xie, E. Q.; Zhou, J. Y.; Zhang, Z. X. Improving gas-sensing properties of electrospun In2O3 nanotubes by Mg acceptor doping. Sens. Actuators B Chem. 2015, 207, 313–320.

    Article  Google Scholar 

  34. Meng, Y.; Liu, G. X.; Liu, A.; Guo, Z. D.; Sun, W. J.; Shan, F. K. Photochemical activation of electrospun In2O3 nanofibers for high-performance electronic devices. ACS Appl. Mater. Interfaces 2017, 9, 10805–10812.

    Article  Google Scholar 

  35. Kim, G. H.; Jeong, W. H.; Ahn, B. D.; Shin, H. S.; Kim, H. J.; Kim, H. J.; Ryu, M. K.; Park, K. B.; Seon, J. B.; Lee, S. Y. Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 2010, 96, 163506.

    Article  Google Scholar 

  36. Liu, G. X.; Liu, A.; Zhu, H. H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y. Q.; Shan, F. K. Low-temperature, nontoxic water-induced metal-oxide thin films and their application in thin-film transistors. Adv. Funct. Mater. 2015, 25, 2564–2572.

    Article  Google Scholar 

  37. Zhang, F.; Liu, G. X.; Liu, A.; Shin, B.; Shan, F. K. Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications. Ceram. Int. 2015, 41, 13218–13223.

    Article  Google Scholar 

  38. Ko, J.; Kim, J.; Park, S. Y.; Lee, E.; Kim, K.; Lim, K. H.; Kim, Y. S. Solution-processed amorphous hafnium-lanthanum oxide gate insulator for oxide thin-film transistors. J. Mater. Chem. C 2014, 2, 1050–1056.

    Article  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51402160, 51302154, and 51672229), the General Research Fund of the Research Grants Council of Hong Kong, China (No. CityU 11275916), the Natural Science Foundation of Shandong Province, China (No. ZR2014EMQ011), the Taishan Scholar Program of Shandong Province, China, the Science Technology, and Innovation Committee of Shenzhen Municipality (No. JCYJ20160229165240684), and was supported by a grant from the Shenzhen Research Institute, City University of Hong Kong. The work was also supported by National Demonstration Center for Experimental Applied Physics Education (Qingdao University).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johnny C. Ho or Fengyun Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Meng, Y., Song, L. et al. High-performance enhancement-mode thin-film transistors based on Mg-doped In2O3 nanofiber networks. Nano Res. 11, 1227–1237 (2018). https://doi.org/10.1007/s12274-017-1735-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1735-8

Keywords

Navigation