Skip to main content
Log in

Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Crystalline α-MoO3 belts consisting of nanosheets stacked along their [010] axes were synthesized via thermal vapor transport of MoO3 powders at elevated temperatures. The MoO3 belts were millimeters in length along their [001] axes and tens to hundreds of micrometers in width along their [100] axes. Mechanical and aqueous exfoliations of the belts to form two-dimensional (2D) nanosheets were processed via the scotch-tape and bovine serum albumin (BSA) assisted methods, respectively. Upon scotch-tape exfoliation, the Raman features of MoO3 exhibited monotonic decreases in intensity as the thickness was gradually fell to approach that of a 2D nanosheet. Most Raman features eventually disappeared when a monolayer nanosheet was produced, except for the Mo–O–Mo stretching mode (Ag) at ~818 cm−1, which was accompanied by mode-softening of up to 5 cm−1. This mode softening, hitherto not reported for 2D α-MoO3 nanosheets, can be attributed to lattice relaxations that are validated here via theoretical density functional perturbation theory calculations. The BSA-assisted exfoliation products exhibited a blueshift in the α-MoO3 nanosheet absorption edge; they also revealed an absorption peak at 3.98 eV that can be attributed to their intrinsic exciton absorptions. These observations, together with the facile synthesis of high-purity α-MoO3 crystals, illuminate the possibility of further 2D α-MoO3 nanosheet production and lattice dynamic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gai, P. L. Dynamic studies of metal oxide catalysts: MoO3. Phil. Mag. A 1981, 43, 841–855.

    Article  Google Scholar 

  2. Barber, S.; Booth, J.; Pyke, D. R.; Reid, R.; Tilley, R. J. D. The influence of crystallographic shear planes on the behavior of molybdenum-tungsten oxide catalysts for the selective oxidation of propene. J. Catal. 1982, 77, 180–191.

    Article  Google Scholar 

  3. Li, Z. C.; Li, Y.; Zhan, E. S.; Ta, N.; Shen, W. J. Morphologycontrolled synthesis of α-MoO3 nanomaterials for ethanol oxidation. J. Mater. Chem. A 2013, 1, 15370–15376.

    Article  Google Scholar 

  4. Balendhran, S.; Walia, S.; Nili, H.; Ou, J. Z.; Zhuiykov, S.; Kaner, R. B.; Sriram, S.; Bhaskaran, M.; Kalantar-zadeh, K. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 2013, 23, 3952–3970.

    Article  Google Scholar 

  5. Zhuiykov, S. Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices; Woodhead Publishing: Cambridge, 2014.

    Google Scholar 

  6. Wang, D.; Li, J. N.; Zhou, Y.; Xu, D. H.; Xiong, X.; Peng, R. W.; Wang, M. Van der Waals epitaxy of ultrathin α-MoO3 sheets on mica substrate with single-unit-cell thickness. Appl. Phys. Lett. 2016, 108, 053107.

    Article  Google Scholar 

  7. Yano, T.; Yoshida, K.; Hayamizu, Y.; Hayashi, T.; Ohuchi, F.; Hara, M. Probing edge-activated resonant Raman scattering from mechanically exfoliated 2D MoO3 nanolayers. 2D Mater. 2015, 2, 035004.

    Article  Google Scholar 

  8. Liu, H. F.; Wong, S. L.; Chi, D. Z. CVD growth of MoS2-based two-dimensional materials. Chem. Vap. Deposition 2015, 21, 241–259.

    Article  Google Scholar 

  9. Lajaunie, L.; Boucher, F.; Dessapt, R.; Moreau, P. Strong anisotropic influence of local-field effects on the dielectric response of α-MoO3. Phys. Rev. B 2013, 88, 115141.

    Article  Google Scholar 

  10. Kalantar-zadeh, K.; Tang, J. S.; Wang, M. S.; Wang, K. L.; Shailos, A.; Galatsis, K.; Kojima, R.; Strong, V.; Lech, A.; Wlodarski, W. et al. Synthesis of nanometre-thick MoO3 sheets. Nanoscale 2010, 2, 429–433.

    Article  Google Scholar 

  11. Illyaskutty, N.; Sreedhar, S.; Kumar, G. S.; Kohler, H.; Schwotzer, M.; Natzeck, C.; Pillai, V. P. M. Alteration of architecture of MoO3 nanostructures on arbitrary substrates: Growth kinetics, spectroscopic and gas sensing properties. Nanoscale 2014, 6, 13882–13894.

    Article  Google Scholar 

  12. Song, L. X.; Xia, J.; Dang, Z.; Yang, J.; Wang, L. B.; Chen, J. Formation, structure and physical properties of a series of α-MoO3 nanocrystals: From 3D to 1D and 2D. CrystEngComm 2012, 14, 2675–2682.

    Article  Google Scholar 

  13. Pukird, S.; Chaiyo, P.; Thumthan, O.; Sumran, S.; Chamninok, P.; Min, B. K.; Kim, S. J.; An, K. S. Synthesis and characterization of uniformly-aligned MoO3 nanobelts. In Proceedings of the International Conference on Advanced Material Science and Environmental Engineering (AMSEE 2016), Chiang Mai, Thailand, 2016, pp41–43.

    Google Scholar 

  14. Senthilkumar, R.; Anandhababu, G.; Mahalingam, T.; Ravi, G. Photoelectrochemical study of MoO3 assorted morphology films formed by thermal evaporation. J. Energy Chem. 2016, 25, 798–804.

    Article  Google Scholar 

  15. Liu, H. F.; Chua, S. J.; Hu, G. X.; Gong, H.; Xiang, N. Effects of substrate on the structure and orientation of ZnO thin film grown by rf-magnetron sputtering. J. Appl. Phys. 2007, 102, 083529.

    Article  Google Scholar 

  16. Liu, H. F.; Chua, S. J.; Chi, D. Z. Effects of temperature and LT-ZnO template on structural and optical properties of thermal-evaporation deposited ZnO submicron crystals. Mater. Lett. 2012, 72, 71–73.

    Article  Google Scholar 

  17. Kurtoglu, M. E.; Longenbach, T.; Gogotsi, Y. Synthesis of quasi-oriented α-MoO3 nanobelts and nanoplatelets on TiO2 coated glass. J. Mater. Chem. 2011, 21, 7931–7936.

    Article  Google Scholar 

  18. Zheng, Q. H.; Huang, J.; Cao, S. L.; Gao, H. L. A flexible ultraviolet photodetector based on single crystalline MoO3 nanosheets. J. Mater. Chem. C 2015, 3, 7469–7475.

    Article  Google Scholar 

  19. Lupan, O.; Trofim, V.; Cretu, V.; Stamov, I.; Syrbu, N. N.; Tiginyanu, I.; Mishra, Y. K.; Adelung, R. Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide. J. Phys. D Appl. Phys. 2014, 47, 085302.

    Article  Google Scholar 

  20. Guan, G. J.; Zhang, S. Y.; Liu, S. H.; Cai, Y. Q.; Low, M.; Teng, C. P.; Phang, I. Y.; Cheng, Y.; Duei, K. L.; Srinivasan, B. M. et al. Protein induces layer-by-layer exfoliation of transition metal dichalcogenides. J. Am. Chem. Soc. 2015, 137, 6152–6155.

    Article  Google Scholar 

  21. Smith, R. L. The structural evolution of the MoO3 (010) surface during reduction and oxidation reactions. Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, PA,USA, 1998.

    Google Scholar 

  22. Swanepoel, R. Determination of the thickness and optical constants of amorphous silicon. J. Phys. E Sci. Instrum. 1983, 16, 1214–1222.

    Article  Google Scholar 

  23. Illcan, S.; Caglar, M.; Caglar, Y. Determination of the thickness and optical constants of transparent indium-doped ZnO thin films by the envelope method. Mater. Sci. Poland 2007, 25, 709–718.

    Google Scholar 

  24. Liu, H. F.; Chi, D. Z. Magnetron-sputter deposition of Fe3S4 thin films and their conversion into pyrite (FeS2) by thermal sulfurization for photovoltaic applications. J. Vac. Sci. Technol. A 2012, 30, 04D102.

    Article  Google Scholar 

  25. Liu, H. F.; Antwi, K. K. A.; Wang, Y. D.; Ong, L. T.; Chua, S. J.; Chi, D. Z. Atomic layer deposition of crystalline Bi2O3 thin films and their conversion into Bi2S3 by thermal vapor sulfurization. RSC Adv. 2014, 4, 58724–58731.

    Article  Google Scholar 

  26. Dieterle, M.; Weinberg G.; Mestl, G. Raman spectroscopy of molybdenum oxides Part I.Structural characterization of oxygen defects in MoO3−x by DRUV/VIS, Raman spectroscopy and X-ray diffraction. Phys. Chem. Chem. Phys. 2002, 4, 812–821.

    Article  Google Scholar 

  27. Inzani, K.; Grande, T.; Vullum-Bruer, F.; Selbach, S. M. A van der Waals density functional study of MoO3 and its oxygen vacancies. J. Phys. Chem. C 2016, 120, 8959–8968.

    Article  Google Scholar 

  28. Carcia, P. F.; McCarron III, E. M. Synthesis and properties of thin film polymorphs of molybdenum trioxide. Thin Solid Films 1987, 155, 53–63.

    Article  Google Scholar 

  29. Sharma, R. K.; Reddy, G. B. Synthesis and characterization of α-MoO3 microspheres packed with nanoflakes. J. Phys. D Appl. Phys. 2014, 47, 065306.

    Article  Google Scholar 

  30. Sharma, R. K.; Reddy, G. B. Controlled growth of vertically aligned MoO3 nanoflakes by plasma assisted paste sublimation process. J. Appl. Phys. 2013, 114, 184310.

    Article  Google Scholar 

  31. Liu, D.; Lei, W. W.; Hao, J.; Liu, D. D.; Liu, B. B.; Wang, X.; Chen, X. H.; Cui, Q. L.; Zou, G. T.; Liu, J. et al. Highpressure Raman scattering and X-ray diffraction of phase transitions in MoO3. J. Appl. Phys. 2009, 105, 023513.

    Article  Google Scholar 

  32. Silveira, J. V.; Vieira, L. L.; Filho, J. M.; Sampaio, A. J. C.; Alves, O. L.; Filho, A. G. S. Temperature-dependent Raman spectroscopy study in MoO3 nanoribbons. J. Raman Spectrosc. 2012, 43, 1407–1412.

    Article  Google Scholar 

  33. Yan, B.; Zheng, Z.; Zhang, J. X.; Gong, H.; Shen, Z. X.; Huang, W.; Yu, T. Orientation controllable growth of MoO3 nanoflakes: Micro-Raman, field emission, and birefringence properties. J. Phys. Chem. C 2009, 113, 20259–20263.

    Article  Google Scholar 

  34. Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I. et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 2009, 21, 395502.

    Article  Google Scholar 

  35. Liu, H. F.; Antwi, K. K. A.; Ying, J. F.; Chua, S.; Chi, D. Z. Towards large area and continuous MoS2 atomic layers via vapor-phase growth: Thermal vapor sulfurization. Nanotechnology 2014, 25, 405702.

    Article  Google Scholar 

  36. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  Google Scholar 

  37. Liu, H. F.; Chua, S. J. Effects of low-temperature-buffer, rf-power, and annealing on structural and optical properties of ZnO/Al2O3(0001) thin films grown by rf-magnetron sputtering. J. Appl. Phys. 2009, 106, 023511.

    Article  Google Scholar 

  38. Liu, H. F.; Antwi, K. K. A.; Chua, S.; Chi, D. Z. Vaporphase growth and characterization of Mo1−xWxS2 (0 ≤ x ≤ 1) atomic layers on 2-inch sapphire substrates. Nanoscale 2014, 6, 624–629.

    Article  Google Scholar 

  39. Liu, H. F.; Chi, D. Z. Dispersive growth and laser-induced rippling of large-area single-layer MoS2 nanosheets by CVD on c-plane sapphire substrate. Sci. Rep. 2015, 5, 11756.

    Article  Google Scholar 

  40. Ji, F. X.; Ren, X. P.; Zheng, X. Y.; Liu, Y. C.; Pang, L. Q.; Jiang, J. X.; Liu, S. Z. 2D-MoO3 nanosheets for superior gas sensors. Nanoscale 2016, 8, 8696–8703.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge B. Li for his setting-up of the tube-furnace and Coryl J. J Lee for collecting the SEM/EDX/XRD data. This research is supported by A*STAR Science and Engineering Research Council Pharos 2D Program (SERC Grant No. 152-70-00012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Liu.

Electronic supplementary material

12274_2017_1733_MOESM1_ESM.pdf

Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Cai, Y., Han, M. et al. Aqueous and mechanical exfoliation, unique properties, and theoretical understanding of MoO3 nanosheets made from free-standing α-MoO3 crystals: Raman mode softening and absorption edge blue shift. Nano Res. 11, 1193–1203 (2018). https://doi.org/10.1007/s12274-017-1733-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1733-x

Keywords

Navigation