Skip to main content
Log in

Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A Z-scheme is a promising approach to achieve broad-spectrum photocatalysis. Integration of TiO2 with another semiconductor with a band gap of ∼1.0 eV would be ideal to harvest both ultraviolet and visible-near infrared light for photocatalysis; however, most narrow-bandgap semiconductors have straddling band structure alignments with TiO2, constituting an obstacle to forming the Z-scheme for photocatalytic hydrogen production. In this communication, we demonstrate Ag2S as a model system where the energy band upshift of the narrow-bandgap semiconductor that shares an interface with a metal can overcome this limitation. To fabricate the design, we developed a unique approach to synthesize Ag2S–Ag–TiO2 hybrid structures. The obtained ternary hybrid structures exhibited dramatically enhanced performance in photocatalytic hydrogen production under full-spectrum light illumination. The activities were significantly higher than the sum of those of Ag2S–Ag–TiO2 structures under λ < 400 nm and λ > 400 nm irradiation as well as those of their counterparts under any light illumination conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.

    Article  Google Scholar 

  2. Sayama, K.; Yoshida, R.; Kusama, H.; Okabe, K.; Abe, Y.; Arakawa, H. Photocatalytic decomposition of water into H2 and O2 by a two-step photoexcitation reaction using a WO3 suspension catalyst and an Fe3+/Fe2+ redox system. Chem. Phys. Lett. 1997, 277, 387–391.

    Article  Google Scholar 

  3. Sayama, K.; Mukasa, K.; Abe, R.; Abe, Y.; Arakawa, H. Stoichiometric water splitting into H2 and O2 using a mixture of two different photocatalysts and an IO -3 /I-shuttle redox mediator under visible light irradiation. Chem. Commun. 2001, 2416–2417.

    Google Scholar 

  4. Kato, H.; Hori, M.; Konta, R.; Shimodaira, Y.; Kudo, A. Construction of Z-scheme type heterogeneous photocatalysis systems for water splitting into H2 and O2 under visible light irradiation. Chem. Lett. 2004, 33, 1348–1349.

    Article  Google Scholar 

  5. Maeda, K. Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal. 2013, 3, 1486–1503.

    Article  Google Scholar 

  6. Sasaki, Y.; Kato, H.; Kudo, A. [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J. Am. Chem. Soc. 2013, 135, 5441–5449.

    Article  Google Scholar 

  7. Yun, H. J.; Lee, H.; Kim, N, D.; Lee, D. M.; Yu, S. J.; Yi, J. A combination of two visible-light responsive photocatalysts for achieving the Z-scheme in the solid state. ACS Nano 2011, 5, 4084–4890.

    Article  Google Scholar 

  8. Liu, C.; Tang, J.; Chen, H. M.; Liu, B.; Yang, P. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 2013, 13, 2989–2992.

    Article  Google Scholar 

  9. Wang, X. W.; Liu, G.; Chen, Z. G.; Li, F.; Wang, L. Z.; Lu, G. Q.; Cheng, H. M. Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chem. Commun. 2009, 3452–3454.

    Google Scholar 

  10. Tada, H.; Mitsui, T.; Kiyonaga, T.; Akita, T.; Tanaka, J. All-solid-state Z-scheme in CdS–Au–TiO2 three-component nanojunction system. Nat. Mater. 2006, 5, 782–786.

    Article  Google Scholar 

  11. Xu, Y; Schoonen, M. A. A. The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 2000, 85, 543–556.

    Article  Google Scholar 

  12. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. J. Steering charge kinetics in photocatalysis: Intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 2015, 44, 2893–2939.

    Article  Google Scholar 

  13. Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 1995, 95, 735–758.

    Article  Google Scholar 

  14. Roy, S. C.; Varghese, O. K.; Paulose, M.; Grimes, C. A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 2010, 4, 1259–1278.

    Article  Google Scholar 

  15. Li, B.; Long, R.; Zhong, X. L.; Bai, Y.; Zhu, Z. J.; Zhang, X.; Zhi, M.; He, J. W.; Wang, C. M.; Li, Z.-Y. et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small 2012, 8, 1710–1716.

    Article  Google Scholar 

  16. Wu, X. F.; Song, H. Y.; Yoon, J. M.; Yu, Y. T.; Chen, Y. F. Synthesis of core–shell Au@TiO2 nanoparticles with truncated wedge-shaped morphology and their photocatalytic properties. Langmuir 2009, 25, 6438–6447.

    Article  Google Scholar 

  17. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  Google Scholar 

  18. Pang, M. L.; Hu, J. Y.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. J. Am. Chem. Soc. 2010, 132, 10771–10785.

    Article  Google Scholar 

  19. Jiang, F. R.; Tian, Q. W.; Tang, M. H.; Chen, Z. G.; Yang, J. M.; Hu, J. Q. One-pot synthesis of large-scaled janus Ag–Ag2S nanoparticles and their photocatalytic properties. CrystEngComm 2011, 13, 7189–7193.

    Article  Google Scholar 

  20. Briggs, D.; Seah, M. P. Practical Surface Analysis; John Wiley & Sons: New York, 1993; vol. 1.

  21. Ye, L. Q.; Liu, J. Y.; Gong, C. Q.; Tian, L. H.; Peng, T. Y.; Zan, L. Two different roles of metallic Ag on Ag/AgX/BiOX (X = Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge. ACS Catal. 2012, 2, 1677–1683.

    Article  Google Scholar 

  22. Fang, C. H.; Lee, Y. H.; Shao, L.; Jiang, R. B.; Wang, J. F.; Xu, Q. H. Correlating the plasmonic and structural evolutions during the sulfidation of silver nanocubes. ACS Nano 2013, 7, 9354–9365.

    Article  Google Scholar 

  23. Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. N. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B. 2006, 110, 15666–15675.

    Article  Google Scholar 

  24. Bao, N. Z.; Shen, L. M.; Takata, T.; Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible light. Chem. Mater. 2008, 20, 110–117.

    Article  Google Scholar 

  25. Tsuji, I.; Kato, H.; Kobayashi, H.; Kudo, A. Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1–x )S2 solid solution photocatalysts with visible-light response and their surface nanostructures. J. Am. Chem. Soc. 2004, 126, 13406–13413.

    Article  Google Scholar 

  26. Pu, Y. C.; Wang, G. M.; Chang, K. D.; Ling, Y. C.; Lin, Y. K.; Fitzmorris, B. C.; Liu, C. M.; Lu, X. H.; Tong, Y. X.; Zhang, J. Z. et al. Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting. Nano Lett. 2013, 13, 3817–3823.

    Article  Google Scholar 

  27. DuChene, J. S.; Sweeny, B. C.; Johnston-Peck, A. C.; Su, D.; Stach, E. A.; Wei, W. D. Prolonged hot electron dynamics in plasmonic-metal/semiconductor heterostructures with implications for solar photocatalysis. Angew. Chem., Int. Ed. 2014, 53, 7887–7891.

    Article  Google Scholar 

  28. Bisquert, J.; Zaban, A.; Greenshtein, M. Mora-Seró, I. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method. J. Am. Chem. Soc. 2004, 126, 13550–13559.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Jiang or Yujie Xiong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, L., Gong, Y. et al. Towards full-spectrum photocatalysis: Achieving a Z-scheme between Ag2S and TiO2 by engineering energy band alignment with interfacial Ag. Nano Res. 8, 3621–3629 (2015). https://doi.org/10.1007/s12274-015-0862-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0862-3

Keywords

Navigation