Skip to main content
Log in

Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

On-chip microsupercapacitors (MSCs) compatible with on-chip geometries of integrated circuits can be used either as a separate power supply in microelectronic devices or as an energy storage or energy receptor accessory unit. In this work, we report the fabrication of flexible two-dimensional Ni(OH)2 nanoplates-based MSCs, which achieved a specific capacitance of 8.80 F/cm3 at the scan rates of 100 mV/s, losing only 0.20% of its original value after 10,000 charge/discharge cycles. Besides, the MSCs reached an energy density of 0.59 mWh/cm3 and a power density up to 1.80 W/cm3, which is comparable to traditional carbon-based devices. The flexible MSCs exhibited good electrochemical stability when subjected to bending at various conditions, illustrating the promising application as electrodes for wearable energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patten, B.; Sánchez, I. A.; Tangney, B. Designing collaborative, constructionist and contextual applications for handheld devices. Comput. Educ. 2006, 46, 294–308.

    Article  Google Scholar 

  2. Yao, S. C.; Tang, X. D.; Hsieh, C. C.; Alyousef, Y.; Vladimer, M.; Fedder, G. K.; Amon, C. H. Micro-electro-mechanical systems (MEMS)-based micro-scale direct methanol fuel cell development. Energy 2006, 31, 636–649.

    Article  Google Scholar 

  3. Zhang, J.; Tan, K. L.; Gong, H. Q. Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693–701.

    Article  Google Scholar 

  4. Henzen, A.; van der Kamer, J.; Nakamura, T.; Tsuji, T.; Yasui, M.; Pitt, M.; Duthaler, G.; Amundson, K.; Gates, H.; Zehner, R. Development of active-matrix electronic-ink displays for handheld devices. J. Soc. Inf. Display 2004, 12, 17–22.

    Article  Google Scholar 

  5. Zhu, Y. G.; Wang, Y.; Shi, Y. M.; Wong, J. I.; Yang, H. Y. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014, 3, 46–54.

    Article  Google Scholar 

  6. Meng, Q. H.; Wu, H. Q.; Meng, Y. N.; Xie, K.; Wei, Z. X.; Guo, Z. X. High-performance all-carbon yarn microsupercapacitor for an integrated energy system. Adv. Mater. 2014, 26, 4100–4106.

    Article  Google Scholar 

  7. Sumboja, A.; Foo, C. Y.; Wang, X.; Lee, P. S. Large areal mass, flexible and free-standing reduced graphene oxide/ manganese dioxide paper for asymmetric supercapacitor device. Adv. Mater. 2013, 25, 2809–2815.

    Article  Google Scholar 

  8. Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

    Google Scholar 

  9. Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourgm, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

    Article  Google Scholar 

  10. Wang, Y.; Shi, Y. M.; Zhao, C. X.; Wong, J. I.; Sun, X. W.; Yang, H. Y. Printed all-solid flexible microsupercapacitors: Towards the general route for high energy storage devices. Nanotechnology 2014, 25, 094010.

    Article  Google Scholar 

  11. Sung, J. H.; Kim, S. J.; Jeong, S. H.; Kim, E. H.; Lee, K. H. Flexible micro-supercapacitors. J. Power Sources 2006, 162, 1467–1470.

    Article  Google Scholar 

  12. Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; Gogotsi, Y. Monolithic carbide-derived carbon films for microsupercapacitors. Science 2010, 328, 480–483.

    Article  Google Scholar 

  13. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    Article  Google Scholar 

  14. Xu, J.; Shen, G. Z. A flexible integrated photodetector system driven by on-chip microsupercapacitors. Nano Energy 2015, 13, 131–139.

    Article  Google Scholar 

  15. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and onchip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  Google Scholar 

  16. Lee, G.; Kim, D.; Yun, J.; Ko, Y. M.; Cho, J.; Ha, J. S. High-performance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655–9664.

    Article  Google Scholar 

  17. Wu, Z. K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K. S.; Bai, S. L.; Wong, C. P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222–228.

    Article  Google Scholar 

  18. Peng, L. L.; Peng, X.; Liu, B. R.; Wu, C. Z.; Xie, Y.; Yu, G. H. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors. Nano Lett. 2013, 13, 2151–2157.

    Article  Google Scholar 

  19. Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122.

    Article  Google Scholar 

  20. Huang, P. H.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Simon, P. On-chip microsupercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53–56.

    Article  Google Scholar 

  21. Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotech 2014, 25, 055401.

    Article  Google Scholar 

  22. Xiong, G. P.; Meng, C. Z.; Reifenberger, R. G.; Irazoqui, P. P.; Fisher, T. S. A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 2014, 26, 30–51.

    Article  Google Scholar 

  23. Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin microsupercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

    Article  Google Scholar 

  24. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    Article  Google Scholar 

  25. Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

    Article  Google Scholar 

  26. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

    Article  Google Scholar 

  27. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    Article  Google Scholar 

  28. Wu, C. Z.; Lu, X. L.; Peng, L. L.; Xu, K.; Peng, X.; Huang, J. L.; Yu, G. H.; Xie, Y. Two-dimensional vanadyl phosphate ultrathin nanosheets for high energy density and flexible pseudocapacitors. Nat. Commun. 2013, 4, 2431.

    Google Scholar 

  29. Han, J. H.; Lin, Y. C.; Chen, L. Y.; Tsai, Y. C.; Ito, Y.; Guo, X. W.; Hirata, A.; Fujita, T.; Esashi, M.; Gessner, T. et al. Onchip micro-pseudocapacitors for ultrahigh energy and power delivery. Adv. Sci. 2015, 2, DOI: 10.1002/advs.201500067.

    Google Scholar 

  30. Zhang, G. Q.; Yu, L.; Hoster, H. E.; Lou, X. W. Synthesis of one-dimensional hierarchical NiO hollow nanostructures with enhanced supercapacitive performance. Nanoscale 2013, 5, 877–881.

    Article  Google Scholar 

  31. Wang, B.; Chen, J. S.; Wang, Z. Y.; WMadhavi, S.; Lou, X. W. Green synthesis of NiO nanobelts with exceptional pseudo-capacitive properties. Adv. Energy Mater. 2012, 2, 1188–1192.

    Article  Google Scholar 

  32. Shen, L. F.; Yu, L.; Yu, X. Y.; Zhang, X. G.; Lou, X. W. Selftemplated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew. Chem., Int. Ed. 2015, 54, 1868–1872.

    Article  Google Scholar 

  33. Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced hree-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

    Article  Google Scholar 

  34. Zhu, J. W.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a low defect density graphene-nickel hydroxide nanosheet hybrid with enhanced electrochemical performance. Nano Res. 2012, 5, 11–19.

    Article  Google Scholar 

  35. Wang, H. L.; Holt, C. M. B.; Li, Z.; Tan, X. H.; Amirkhiz, B. S.; Xu, Z. W.; Olsen, B. C.; Stephenson, T.; Mitlin, D. Graphene–nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading. Nano Res. 2012, 5, 605–617.

    Article  Google Scholar 

  36. Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.

    Article  Google Scholar 

  37. Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

    Article  Google Scholar 

  38. Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348–355.

    Article  Google Scholar 

  39. Wang, Q. F.; Wang, X. F.; Xu, J.; Ouyang, X.; Hou, X. J.; Chen, D.; Wang, R. M.; Shen, G. Z. Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 2014, 8, 44–51.

    Article  Google Scholar 

  40. Ren, Y. M.; Wang, L.; Dai, Z. J.; Huang, X. K.; Li, J. J.; Chen, N.; Gao, J.; Zhao, H. L.; Sun, X. M.; He, X. M. Hydrothermal synthesis of ß-Ni(OH)2 nanoplates as electrochemical pseudocapacitor materials. Int. J. Electrochem. Sci. 2012, 7, 12236–12243.

    Google Scholar 

  41. Alhebshi, N. A.; Rakhi, R. B.; Alshareef, H. N. Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. J. Mater. Chem. A. 2013, 1, 14897–14903.

    Article  Google Scholar 

  42. Xu, J.; Wu, H.; Lu, L. F.; Leung, S. F.; Chen, D.; Chen, X. Y.; Fan, Z. Y.; Shen, G. Z.; Li, D. D. Integrated photosupercapacitor based on Bi-polar TiO2 nanotube arrays with selective one-side plasma-assisted hydrogenation. Adv. Funct. Mater. 2014, 24, 1840–1846.

    Article  Google Scholar 

  43. Wu, H.; Lou, Z.; Yang, H.; Shen, G. Z. A flexible spiral-type supercapacitor based on ZnCo2O4 nanorod electrodes. Nanoscale 2015, 7, 1921–1926.

    Article  Google Scholar 

  44. Kurra, N.; Alhebshi, N. A.; Alshareef, H. N. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density. Adv. Energy Mater. 2015, 5, DOI: 10.1002/aenm.201401303.

    Google Scholar 

  45. Jiang, H.; Zhao, T.; Li, C. Z.; Ma, J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. J. Mater. Chem. 2011, 21, 3818–3823.

    Article  Google Scholar 

  46. Lim, B. Y.; Yoon, J. Y.; Yun, J. Y.; Kim, D.; Hong, S. Y.; Lee, S. J.; Zi, G.; Ha, J. S. Biaxially stretchable, integrated array of high performance microsupercapacitors. ACS Nano 2014, 8, 11639–11650.

    Article  Google Scholar 

  47. Sun, C. L.; Shi, J.; Bayerl, D. J.; Wang, X. D. PVDF microbelts for harvesting energy from respiration. Energy Environ. Sci. 2011, 4, 4508–4512.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Jiang or Guozhen Shen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, H., Jiang, K., Gu, S. et al. Two-dimensional Ni(OH)2 nanoplates for flexible on-chip microsupercapacitors. Nano Res. 8, 3544–3552 (2015). https://doi.org/10.1007/s12274-015-0854-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0854-3

Keywords

Navigation