Skip to main content
Log in

Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Novel hierarchical carbon nanocages (hCNCs) are proposed as high-rate anodes for Li- and Na-ion batteries. The unique structure of the porous network for hCNCs greatly favors electrolyte penetration, ion diffusion, electron conduction, and structural stability, resulting in high rate capability and excellent cyclability. For lithium storage, the corresponding electrode stores a steady reversible capacity of 970 mAh·g−1 at a rate of 0.1 A·g−1 after 10 cycles, and stabilizes at 229 mAh·g−1 after 10,000 cycles at a high rate of 25 A·g−1 (33 s for full-charging) while delivering a large specific power of \(37 kW \cdot kg_{electrode^{ - 1} }\) and specific energy of \(339 Wh \cdot kg_{electrode^{ - 1} }\). For sodium storage, the hCNC reaches a high discharge capacity of ∼50 mAh·g−1 even at a high rate of 10 A·g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 2, 652–657.

    Article  Google Scholar 

  2. Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 2, 1167–1176.

    Article  Google Scholar 

  3. Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 2, 928–935.

    Article  Google Scholar 

  4. Yang, Z. G.; Zhang, J. L.; Kintner-Meyer, M. C. W.; Lu, X. C.; Choi, D.; Lemmon, J. P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 2, 3577–3613.

    Article  Google Scholar 

  5. Nazar, L. F.; Cuisinier, M.; Pang, Q. Lithium-sulfur batteries. MRS Bull. 2014, 2, 436–442.

    Article  Google Scholar 

  6. Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 2, 190–193.

    Article  Google Scholar 

  7. Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Casalongue, H. S.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew. Chem., Int. Ed. 2011, 2, 7364–7368.

    Article  Google Scholar 

  8. Hassoun, J.; Lee, K. S.; Sun, Y. K.; Scrosati, B. An advanced lithium ion battery based on high performance electrode materials. J. Am. Chem. Soc. 2011, 2, 3139–3143.

    Article  Google Scholar 

  9. Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 2, 733–737.

    Article  Google Scholar 

  10. Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721.

    Article  Google Scholar 

  11. Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 2, 947–958.

    Article  Google Scholar 

  12. Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 2, 512–517.

    Article  Google Scholar 

  13. Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem., Int. Ed. 2013, 2, 1964–1967.

    Article  Google Scholar 

  14. You, Y.; Yu, X. Q.; Yin, Y. X.; Nam, K. W.; Guo, Y. G. Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries. Nano Res. 2015, 2, 117–128.

    Article  Google Scholar 

  15. Wang, S. W.; Wang, L. J.; Zhu, Z. Q.; Hu, Z.; Zhao, Q.; Chen, J. All organic sodium-ion batteries with Na4C8H2O6. Angew. Chem. 2014, 2, 6002–6006.

    Article  Google Scholar 

  16. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 2, 2930–2946.

    Article  Google Scholar 

  17. Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 2, 1759–1769.

    Article  Google Scholar 

  18. Armstrong, M. J.; O’ Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 2, 1–62.

    Article  Google Scholar 

  19. Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 2015, 347, 1246501.

    Article  Google Scholar 

  20. Yu, G. H.; Xie, X.; Pan, L. J.; Bao, Z. N.; Cui, Y. Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy 2013, 2, 213–234.

    Article  Google Scholar 

  21. Manthiram, A. Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2011, 2, 176–184.

    Article  Google Scholar 

  22. Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 2, 3093–3100.

    Article  Google Scholar 

  23. Lin, Y. M.; Abel, P. R.; Gupta, A.; Goodenough, J. B.; Heller, A.; Mullins, C. B. Sn-Cu nanocomposite anodes for rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces 2013, 2, 8273–8277.

    Article  Google Scholar 

  24. Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S. B.; Feng, X. L.; Mullen, K. Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 2012, 2, 19532–19535.

    Article  Google Scholar 

  25. Chen, L. F.; Huang, Z. H.; Liang, H. W.; Cao, H. L.; Yu, S. H. Three-dimensional heteroatom-doped carbon nanofiber networks derived from bacterial cellulose for supercapacitors. Adv. Func. Mater. 2014, 2, 5104–5111.

    Article  Google Scholar 

  26. Song, H. W.; Yang, G. Z.; Wang, C. X. General scalable strategy toward heterogeneously doped hierarchical porous graphitic carbon bubbles for lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2014, 2, 21661–21668.

    Article  Google Scholar 

  27. Lyu, Z.; Xu, D.; Yang, L. J.; Che, R. C.; Feng, R.; Zhao, J.; Li, Y.; Wu, Q.; Wang, X. Z.; Hu, Z. Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium-sulfur batteries. Nano Energy 2015, 2, 657–665.

    Article  Google Scholar 

  28. Tian, Y. J.; Hu, Z.; Yang, Y.; Wang, X. Z.; Chen, X.; Xu, H.; Wu, Q.; Ji, W. J.; Chen, Y. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor. J. Am. Chem. Soc. 2004, 2, 1180–1183.

    Article  Google Scholar 

  29. Zhang, L. R.; Zhao, J.; Li, M.; Ni, H. T.; Zhang, J. L.; Feng, X. M.; Ma, Y. W.; Fan, Q. L.; Wang, X. Z.; Hu, Z et al. Preparation of graphene supported nickel nanoparticles and their application to methanol electrooxidation in alkaline medium. New J. Chem. 2012, 2, 1108–1113.

    Article  Google Scholar 

  30. Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 2, 5463–5471.

    Article  Google Scholar 

  31. Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 2, 1524–1530.

    Article  Google Scholar 

  32. Mukherjee, R.; Thomas, A. V.; Krishnamurthy, A.; Koratkar, N. Photothermally reduced graphene as high-power anodes for lithium-ion batteries. ACS Nano 2012, 2, 7867–7878.

    Article  Google Scholar 

  33. Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Papandrea, B.; Huang, Y.; Duan, X. F. Solvated graphene frameworks as highperformance anodes for lithium-ion batteries. Angew. Chem., Int. Ed. 2015, 2, 5345–5350.

    Article  Google Scholar 

  34. Liu, N.; Hu, L. B.; McDowell, M. T.; Jackson, A.; Cui, Y. Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 2011, 2, 6487–6493.

    Article  Google Scholar 

  35. De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon nanotubes: Present and future commercial applications. Science 2013, 2, 535–539.

    Article  Google Scholar 

  36. Service, R. F. The next big(ger) thing. Science 2012, 335, 1167.

    Article  Google Scholar 

  37. Weiss, P. S. Mesoscale science: Lessons from and opportunities for nanoscience. ACS Nano 2014, 2, 11025–11026.

    Article  Google Scholar 

  38. Lee, S. W.; Yabuuchi, N.; Gallant, B. M.; Chen, S.; Kim, B. S.; Hammond, P. T.; Yang, S. H. High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat. Nanotech. 2010, 2, 531–537.

    Article  Google Scholar 

  39. Wu, Z. S.; Ren, W. C.; Xu, L.; Li, F.; Cheng, H. M. Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 2011, 2, 5463–5471.

    Article  Google Scholar 

  40. Wang, Z. L.; Xu, D.; Wang, H. G.; Wu, Z.; Zhang, X. B. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano 2013, 2, 2422–2430.

    Article  Google Scholar 

  41. Zhao, X.; Hayner, C. M.; Kung, M. C.; Kung, H. H. Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano 2011, 2, 8739–8749.

    Article  Google Scholar 

  42. Kim, K. T.; Ai, G.; Chung, K. Y.; Yoon, C. S.; Yashiro, H.; Sun, Y. K.; Lu, J.; Amine, K.; Myung, S. T. Anatase titania nanorods as an intercalation anode material for rechargeable sodium batteries. Nano Lett. 2014, 2, 416–422.

    Article  Google Scholar 

  43. Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett. 2012, 2, 3783–3787.

    Article  Google Scholar 

  44. Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

    Article  Google Scholar 

  45. Ding, J.; Wang, H. L.; Li, Z.; Kohandehghan, A.; Cui, K.; Xu, Z. W.; Zahiri, B.; Tan, X. H.; Lotfabad, E. M.; Olsen, B. C.; Mitlin, D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 2013, 2, 11004–11015.

    Article  Google Scholar 

  46. Yan, Y.; Yin, Y. X.; Guo, Y. G.; Wan, L. J. A sandwich-like hierarchically porous carbon/graphene composite as a highperformance anode material for sodium-ion batteries. Adv. Energy Mater. 2014, 4, DOI: 10.1002/aenm.201301584.

  47. Wen, Y.; He, K.; Zhu, Y. J.; Han, F. D.; Xu, Y. H.; Matsuda, I.; Ishii, Y.; Cumings, J.; Wang, C. S. Expanded graphite as superior anode for sodium-ion batteries. Nat. Commun. 2014, 5, 4033.

    Google Scholar 

  48. Datta, D.; Li, J. W.; Shenoy, V. B. Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 2014, 2, 1788–1795.

    Article  Google Scholar 

  49. Ghaffari, M.; Zhou, Y.; Xu, H. P.; Lin, M. R.; Kim, T. Y.; Ruoff, R. S.; Zhang, Q. M. High-volumetric performance aligned nano-porous microwave exfoliated graphite oxidebased electrochemical capacitors. Adv. Mater. 2013, 2, 4879–4885.

    Article  Google Scholar 

  50. Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 2, 534–537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xizhang Wang or Zheng Hu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Z., Yang, L., Xu, D. et al. Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 8, 3535–3543 (2015). https://doi.org/10.1007/s12274-015-0853-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0853-4

keywords

Navigation