Skip to main content
Log in

Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Catalyst-free and scalable synthesis of graphene on various glass substrates at low temperatures is of paramount significance to numerous applications such as low-cost transparent electronics and state-of-the-art displays. However, systematic study within this promising research field has remained scarce thus far. Herein, we report the direct growth of graphene on various glasses using a low-temperature plasma-enhanced chemical vapor deposition method. Such a facile and scalable approach guarantees the growth of uniform, transfer-free graphene films on various glass substrates at a growth temperature range of 400–600 °C. The morphological, surface wetting, optical, and electrical properties of the obtained graphene can be tailored by controlling the growth parameters. Our uniform and high-quality graphene films directly integrated with low-cost, commonly used glasses show great potential in the fabrication of multi-functional electrodes for versatile applications in solar cells, transparent electronics, and smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S.; Fal’ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200.

    Article  Google Scholar 

  2. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

    Article  Google Scholar 

  3. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  4. Yan, K.; Fu, L.; Peng, H. L.; Liu, Z. F. Designed CVD growth of graphene via process engineering. Acc. Chem. Res. 2013, 46, 2263–2274.

    Article  Google Scholar 

  5. Gao, L. B.; Ren, W. C.; Xu, H. L.; Jin, L.; Wang, Z. X.; Ma, T.; Ma, L.-P.; Zhang, Z. Y.; Fu, Q.; Peng, L.-M.; Bao, X. H.; Cheng, H.-M. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699.

    Article  Google Scholar 

  6. Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat. Commun. 2011, 2, 522.

    Article  Google Scholar 

  7. Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  Google Scholar 

  8. Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B. H. Largescale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

    Article  Google Scholar 

  9. Tan, L. F.; Zeng, M. Q.; Wu, Q.; Chen, L. F.; Wang, J.; Zhang, T.; Eckert, J.; Rümmeli, M. H.; Fu, L. Direct growth of ultrafast transparent single-layer graphene defoggers. Small 2015, 11, 1840–1846.

    Article  Google Scholar 

  10. Xu, S. C.; Man, B. Y.; Jiang, S. Z.; Yue, W. W.; Yang, C.; Liu, M.; Chen, C. S.; Zhang, C. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology 2014, 25, 165702.

    Article  Google Scholar 

  11. Sun, J. Y.; Gao, T.; Song, X. J.; Zhao, Y. F.; Lin, Y. W.; Wang, H. C.; Ma, D. L.; Chen, Y. B.; Xiang, W. F.; Wang, J.; Zhang, Y. F.; Liu, Z. F. Direct growth of high-quality graphene on high-? dielectric SrTiO3 substrates. J. Am. Chem. Soc. 2014, 136, 6574–6577.

    Article  Google Scholar 

  12. Chen, J. Y.; Guo, Y. L.; Jiang, L. L.; Xu, Z. P.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Hu, W. P.; Yu, G.; Liu, Y. Q. Near-equilibrium chemical vapor deposition of highquality single-crystal graphene directly on various dielectric substrates. Adv. Mater. 2014, 26, 1348–1353.

    Article  Google Scholar 

  13. Wei, D. C.; Lu, Y. H.; Han, C.; Niu, T. C.; Chen, W.; Wee, A. T. S. Critical crystal growth of graphene on dielectric substrates at low temperature for electronic devices. Angew. Chem., Int. Edit. 2013, 52, 14121–14126.

    Article  Google Scholar 

  14. Medina, H.; Lin, Y.-C.; Jin, C.; Lu, C.-C.; Yeh, C.-H.; Huang, K.-P.; Suenaga, K.; Robertson, J.; Chiu, P.-W. Metalfree growth of nanographene on silicon oxides for transparent conducting applications. Adv. Funct. Mater. 2012, 22, 2123–2128.

    Article  Google Scholar 

  15. Zhang, L. C.; Shi, Z. W.; Wang, Y.; Yang, R.; Shi, D. X.; Zhang, G. Y. Catalyst-free growth of nanographene films on various substrates. Nano Res. 2011, 4, 315–321.

    Article  Google Scholar 

  16. Hwang, J.; Kim, M.; Campbell, D.; Alsalman, H. A.; Kwak, J. Y.; Shivaraman, S.; Woll, A. R.; Singh, A. K.; Hennig, R. G.; Gorantla, S.; Rummeli, M. H.; Spencer, M. G. van der Waals epitaxial growth of graphene on sapphire by chemical vapor deposition without a metal catalyst. ACS Nano 2013, 7, 385–395.

    Article  Google Scholar 

  17. Chen, J. Y.; Guo, Y. L.; Wen, Y. G.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wu, B.; Luo, B. R.; Yu, G.; Liu, Y. Q. Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv. Mater. 2013, 25, 992–997.

    Article  Google Scholar 

  18. Song, H. J.; Son, M.; Park, C.; Lim, H.; Levendorf, M. P.; Tsen, A. W.; Park, J.; Choi, H. C. Large scale metal-free synthesis of graphene on sapphire and transfer-free device fabrication. Nanoscale 2012, 4, 3050–3054.

    Article  Google Scholar 

  19. Bi, H.; Sun, S. R.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications. J. Mater. Chem. 2012, 22, 411–416.

    Article  Google Scholar 

  20. Chen, J. Y.; Wen, Y. G.; Guo, Y. L.; Wu, B.; Huang, L. P.; Xue, Y. Z.; Geng, D. C.; Wang, D.; Yu, G.; Liu, Y. Q. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J. Am. Chem. Soc. 2011, 133, 17548–17551.

    Article  Google Scholar 

  21. Bo, Z.; Yang, Y.; Chen, J. H.; Yu, K. H.; Yan, J. H.; Cen, K. F. Plasma-enhanced chemical vapor deposition synthesis of vertically oriented graphene nanosheets. Nanoscale 2013, 5, 5180–5204.

    Article  Google Scholar 

  22. Zhao, J.; He, C. L.; Yang, R.; Shi, Z. W.; Cheng, M.; Yang, W.; Xie, G. B.; Wang, D. M.; Shi, D. X.; Zhang, G. Y. Ultra-sensitive strain sensors based on piezoresistive nanographene films. Appl. Phys. Lett. 2012, 101, 063112.

    Article  Google Scholar 

  23. Yang, W.; He, C. L.; Zhang, L. C.; Wang, Y.; Shi, Z. W.; Cheng, M.; Xie, G. B.; Wang, D. M.; Yang, R.; Shi, D. X.; Zhang, G. Y. Growth, characterization, and properties of nanographene. Small 2012, 8, 1429–1435.

    Article  Google Scholar 

  24. Zhao, J.; Wang, G. L.; Yang, R.; Lu, X. B.; Cheng, M.; He, C. L.; Xie, G. B.; Meng, J. L.; Shi, D. X.; Zhang, G. Y. Tunable piezoresistivity of nanographene films for strain sensing. Acs Nano 2015, 9, 1622–1629.

    Article  Google Scholar 

  25. Yang, C. Y.; Bi, H.; Wan, D. Y.; Huang, F. Q.; Xie, X. M.; Jiang, M. H. Direct PECVD growth of vertically erected graphene walls on dielectric substrates as excellent multifunctional electrodes. J. Mater. Chem. A 2013, 1, 770–775.

    Article  Google Scholar 

  26. Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

    Article  Google Scholar 

  27. Kim, Y. S.; Joo, K.; Jerng, S.-K.; Lee, J. H.; Moon, D.; Kim, J.; Yoon, E.; Chun, S.-H. Direct integration of polycrystalline graphene into light emitting diodes by plasma-assisted metalcatalyst- free synthesis. Acs Nano 2014, 8, 2230–2236.

    Article  Google Scholar 

  28. Mao, S.; Yu, K. H.; Chang, J. B.; Steeber, D. A.; Ocola, L. E.; Chen, J. H. Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 2013, 3, 1696.

    Google Scholar 

  29. Takeuchi, W.; Ura, M.; Hiramatsu, M.; Tokuda, Y.; Kano, H.; Hori, M. Electrical conduction control of carbon nanowalls. Appl. Phys. Lett. 2008, 92, 213103.

    Article  Google Scholar 

  30. Zhang, D. W.; Li, X. D.; Li, H. B.; Chen, S.; Sun, Z.; Yin, X. J.; Huang, S. M. Graphene-based counter electrode for dye-sensitized solar cells. Carbon 2011, 49, 5382–5388.

    Article  Google Scholar 

  31. Zhu, M. Y.; Outlaw, R. A.; Bagge-Hansen, M.; Chen, H. J.; Manos, D. M. Enhanced field emission of vertically oriented carbon nanosheets synthesized by C2H2/H2 plasma enhanced CVD. Carbon 2011, 49, 2526–2531.

    Article  Google Scholar 

  32. Wan, L.; Wang, S. M.; Wang, X. B.; Dong, B. H.; Xu, Z. X.; Zhang, X. H.; Yang, B.; Peng, S. M.; Wang, J. C.; Xu, C. H. Room-temperature fabrication of graphene films on variable substrates and its use as counter electrodes for dye-sensitized solar cells. Solid State Sci. 2011, 13, 468–475.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfeng Zhang or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Chen, Y., Cai, X. et al. Direct low-temperature synthesis of graphene on various glasses by plasma-enhanced chemical vapor deposition for versatile, cost-effective electrodes. Nano Res. 8, 3496–3504 (2015). https://doi.org/10.1007/s12274-015-0849-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0849-0

Keywords

Navigation