Skip to main content
Log in

NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Well-dispersed bimetallic NiRh nanoparticles (NPs) with different compositions supported on nitrogen-doped porous carbon (NPC) derived from metal–organic frameworks (ZIF-8) were synthesized through a co-reduction method. The NPC-900 supported NiRh catalyst exhibits the highest catalytic activity and 100% hydrogen selectivity toward hydrogen generation from hydrazine. These properties might be attributed to the high surface area and high graphitization of the NPC. This strategy may open up a new avenue for designing high-performance catalysts by utilizing NPC as a support to anchor active metal NPs for additional applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293.

    Article  Google Scholar 

  2. Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High capacity hydrogen storage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675.

    Article  Google Scholar 

  3. Wang, C.; Liu, D. M.; Lin, W. B. Metal–organic frameworks as a tunable platform for designing functional molecular materials. J. Am. Chem. Soc. 2013, 135, 13222–13234.

    Article  Google Scholar 

  4. Suh, M. P.; Park, H. J.; Prasad, T. K.; Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 2012, 112, 782–835.

    Article  Google Scholar 

  5. Luo, W.; Campbell, P. G.; Zakharov, L. N.; Liu, S.-Y. A single-component liquid-phase hydrogen storage material. J. Am. Chem. Soc. 2011, 133, 19326–19329.

    Article  Google Scholar 

  6. Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 2009, 38, 73–82.

    Article  Google Scholar 

  7. Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

    Article  Google Scholar 

  8. Aranishi, K.; Jiang, H.-L.; Akita, T.; Haruta, M.; Xu, Q. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core-shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res. 2011, 4, 1233–1241.

    Article  Google Scholar 

  9. Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725.

    Article  Google Scholar 

  10. Singh, S. K.; Xu, Q. Nanocatalysts for hydrogen generation from hydrazine. Catal. Sci. Technol. 2013, 3, 1889–1900.

    Article  Google Scholar 

  11. O, S.-I.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. High catalytic kinetic performance of amorphous CoPt NPs induced on CeOx for H2 generation from hydrous hydrazine. Int. J. Hydrogen Energy 2014, 39, 3755–3761.

  12. O, S.-I.; Yan, J.-M.; Wang, H.-L.; Wang, Z.-L.; Jiang, Q. Ni/La2O3 catalyst containing low content platinum rhodium for the dehydrogenation of N2H4·H2O at room temperature. J. Power Sources 2014, 262, 386–390.

  13. Wang, H.-L.; Yan, J.-M.; Li, S.-J.; Zhang, X.-W.; Jiang, Q. Noble-metal-free NiFeMo nanocatalyst for hydrogen generation from the decomposition of hydrous hydrazine. J. Mater. Chem. A 2015, 3, 121–124.

    Article  Google Scholar 

  14. He, L.; Liang, B. L.; Li, L.; Yang, X. F.; Huang, Y. Q.; Wang, A. Q.; Wang, X. D.; Zhang, T. Cerium-oxide-modified nickel as a non-noble metal catalyst for selective decomposition of hydrous hydrazine to hydrogen. ACS Catal. 2015, 5, 1623–1628.

    Article  Google Scholar 

  15. Li, Z. L.; Liu, J. H.; Huang, Z. W.; Yang, Y.; Xia, C. G.; Li, F. W. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal. 2013, 3, 839–845.

    Article  Google Scholar 

  16. Li, Z. L.; Liu, J. H.; Xia, C. G.; Li, F. W. Nitrogenfunctionalized ordered mesoporous carbons as multifunctional supports of ultrasmall Pd nanoparticles for hydrogenation of phenol. ACS Catal. 2013, 3, 2440–2448.

    Article  Google Scholar 

  17. Qu, L. T.; Liu, Y.; Baek, J.-B.; Dai, L. M. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326.

    Article  Google Scholar 

  18. Sun, J.-K.; Xu, Q. Functional materials derived from open framework templates/precursors: Synthesis and applications. Energy Environ. Sci. 2014, 7, 2071–2100.

    Article  Google Scholar 

  19. Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774–781.

    Article  Google Scholar 

  20. Torad, N. L.; Hu, M.; Kamachi, Y.; Takai, K.; Imura, M.; Naito, M.; Yamauchi, Y. Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 2013, 49, 2521–2523.

    Article  Google Scholar 

  21. Jiang, H.-L.; Liu, B.; Lan, Y.-Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F. Q.; Xu, Q. From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857.

    Article  Google Scholar 

  22. Wu, R. B.; Qian, X. K.; Rui, X. H.; Liu, H.; Yadian, B. L.; Zhou, K.; Wei, J.; Yan, Q. Y.; Feng, X.-Q.; Long, Y. et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938.

    Article  Google Scholar 

  23. Hu, L.; Huang, Y. M.; Zhang, F. P.; Chen, Q. W. CuO/Cu3O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190.

    Article  Google Scholar 

  24. Salunkhe, R. R.; Kamachi, Y.; Torad, N. L.; Hwang, S. M.; Sun, Z. Q.; Dou, S. X.; Kim, J. H.; Yamauchi, Y. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons. J. Mater. Chem. A 2014, 2, 19848–19854.

    Article  Google Scholar 

  25. Meng, F. L.; Fang, Z. G.; Li, Z. X.; Xu, W. W.; Wang, M. J.; Liu, Y. P.; Zhang, J.; Wang, W. R.; Zhao, D. Y.; Guo, X. H. Porous Co3O4 materials prepared by solid-state thermolysis of a novel Co-MOF crystal and their superior energy storage performances for supercapacitors. J. Mater. Chem. A 2013, 1, 7235–7241.

    Article  Google Scholar 

  26. Wang, J.-L.; Wang, C.; Lin, W. B. Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal. 2012, 2, 2630–2640.

    Article  Google Scholar 

  27. Zhang, P.; Sun, F.; Xiang, Z. H.; Shen, Z. G.; Yun, J.; Cao, D. P. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450.

    Article  Google Scholar 

  28. Zhao, S. L.; Yin, H. J.; Du, L.; He, L. C.; Zhao, K.; Chang, L.; Yin, G. P.; Zhao, H. J.; Liu, S. Q.; Tang, Z. Y. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668.

    Article  Google Scholar 

  29. Karagiaridi, O.; Lalonde, M. B.; Bury, W.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T. Opening ZIF-8: A catalytically active zeolitic imidazolate framework of sodalite topology with unsubstituted linkers. J. Am. Chem. Soc. 2012, 134, 18790–18796.

    Article  Google Scholar 

  30. Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391.

    Article  Google Scholar 

  31. Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

    Article  Google Scholar 

  32. Sheng, Z.-H.; Shao, L.; Chen, J.-J.; Bao, W.-J.; Wang, F.-B.; Xia, X.-H. Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 2011, 5, 4350–4358.

    Article  Google Scholar 

  33. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud' homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

    Article  Google Scholar 

  34. Zhong, H.-X.; Wang, J.; Zhang, Y.-W.; Xu, W.-L.; Xing, W.; Xu, D.; Zhang, Y.-F.; Zhang, X.-B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 2014, 53, 14235–14239.

    Article  Google Scholar 

  35. Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768–771.

    Article  Google Scholar 

  36. Singh, S. K.; Xu, Q. Complete conversion of hydrous hydrazine to hydrogen at room temperature for chemical hydrogen storage. J. Am. Chem. Soc. 2009, 131, 18032–18033.

    Article  Google Scholar 

  37. Wang, J.; Zhang, X.-B.; Wang, Z.-L.; Wang, L.-M.; Zhang, Y. Rhodium-nickel nanoparticles grown on graphene as highly efficient catalyst for complete decomposition of hydrous hydrazine at room temperature for chemical hydrogen storage. Energy Environ. Sci. 2012, 5, 6885–6888.

    Article  Google Scholar 

  38. Singh, A. K.; Yadav, M.; Aranishi, K.; Xu, Q. Temperatureinduced selectivity enhancement in hydrogen generation from Rh–Ni nanoparticle-catalyzed decomposition of hydrous hydrazine. Int. J. Hydrogen Energy 2012, 37, 18915–18919.

    Article  Google Scholar 

  39. Xia, B. Q.; Cao, N.; Dai, H. M.; Su, J.; Wu, X. J.; Luo, W.; Cheng, G. Z. Bimetallic nickel–rhodium nanoparticles supported on ZIF-8 as highly efficient catalysts for hydrogen generation from hydrazine in alkaline solution. ChemCatChem 2014, 6, 2549–2552.

    Article  Google Scholar 

  40. Singh, S. K.; Iizuka, Y.; Xu, Q. Nickel–palladium nanoparticle catalyzed hydrogen generation from hydrous hydrazine for chemical hydrogen storage. Int. J. Hydrogen Energy 2011, 36, 11794–11801.

    Article  Google Scholar 

  41. Singh, S. K.; Lu, Z. H.; Xu, Q. Temperature-induced enhancement of catalytic performance in selective hydrogen generation from hydrous hydrazine with Ni-based nanocatalysts for chemical hydrogen storage. Eur. J. Inorg. Chem. 2011, 2011, 2232–2237.

    Article  Google Scholar 

  42. He, L.; Huang, Y. Q.; Wang, A. Q.; Liu, Y.; Liu, X. Y.; Chen, X. W.; Delgado, J. J.; Wang, X. D.; Zhang, T. Surface modification of Ni/Al2O3 with Pt: Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine. J. Catal. 2013, 298, 1–9.

    Article  Google Scholar 

  43. Singh, A. K.; Xu, Q. Metal–organic framework supported bimetallic NiPt nanoparticles as high performance catalysts for hydrogen generation from hydrazine in aqueous solution. ChemCatChem 2013, 5, 3000–3004.

    Article  Google Scholar 

  44. Wang, H.-L.; Yan, J.-M.; Wang, Z.-L.; O, S.-I.; Jiang, Q. Highly efficient hydrogen generation from hydrous hydrazine over amorphous Ni0.9Pt0.1/Ce2O3 nanocatalyst at room temperature. J. Mater. Chem. A 2013, 1, 14957–14962.

    Article  Google Scholar 

  45. Singh, S. K.; Xu, Q. Bimetallic nickel–iridium nanocatalysts for hydrogen generation by decomposition of hydrous hydrazine. Chem. Commun. 2010, 46, 6545–6547.

    Article  Google Scholar 

  46. Aijaz, A.; Fujiwara, N.; Xu, Q. From metal–organic framework to nitrogen-decorated nanoporous carbons: High CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 2014, 136, 6790–6793.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Luo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, B., Chen, K., Luo, W. et al. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 8, 3472–3479 (2015). https://doi.org/10.1007/s12274-015-0845-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0845-4

Keywords

Navigation