Skip to main content
Log in

Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Cancer chemotherapy has been limited by its side effects and multidrug resistance (MDR), the latter of which is partially caused by drug efflux from cancer cells. Thus, targeted drug delivery systems that can circumvent MDR are needed. Here, we report multifunctional DNA nanoflowers (NFs) for targeted drug delivery to both chemosensitive and MDR cancer cells that circumvented MDR in both leukemia and breast cancer cell models. NFs are self-assembled via potential co-precipitation of DNA and magnesium pyrophosphate generated by rolling circle replication, during which NFs are incorporated using aptamers for specific cancer cell recognition, fluorophores for bioimaging, and doxorubicin (Dox)-binding DNA for drug delivery. NF sizes are tunable (down to ∼200 nm in diameter), and the densely packed drug-binding motifs and porous intrastructures endow NFs with a high drug-loading capacity (71.4%, wt/wt). Although the Doxloaded NFs (NF-Dox) are stable at physiological pH, drug release is facilitated under acidic or basic conditions. NFs deliver Dox into target chemosensitive and MDR cancer cells, preventing drug efflux and enhancing drug retention in MDR cells. NF-Dox induces potent cytotoxicity in both target chemosensitive cells and MDR cells, but not in nontarget cells, thus concurrently circumventing MDR and reducing side effects. Overall, these NFs are promising tools for circumventing MDR in targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev. 2004, 56, 185–229.

    Article  Google Scholar 

  2. Holohan, C.; Van Schaeybroeck, S.; Longley, D. B.; Johnston, P. G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013, 13, 714–726.

    Article  Google Scholar 

  3. Wiernik, P. H. Anthracyclines: Current status and new development. Academic Press, NY 1980.

    Google Scholar 

  4. Chatterjee, K.; Zhang, J. Q.; Honbo, N.; Karliner, J. S. Doxorubicin cardiomyopathy. Cardiol. 2010, 115, 155–162.

    Article  Google Scholar 

  5. Szakacs, G.; Paterson, J. K.; Ludwig, J. A.; Booth-Genthe, C.; Gottesman, M. M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov. 2006, 5, 219–234.

    Article  Google Scholar 

  6. Gottesman, M. M.; Fojo, T.; Bates, S. E. Multidrug resistance in cancer: Role of atp-dependent transporters. Nat. Rev. Cancer 2002, 2, 48–58.

    Article  Google Scholar 

  7. Aller, S. G.; Yu, J.; Ward, A.; Weng, Y.; Chittaboina, S.; Zhuo, R.; Harrell, P. M.; Trinh, Y. T.; Zhang, Q.; Urbatsch, I. L. et al. Structure of p-glycoprotein reveals a molecular basis for poly-specific drug binding. Science 2009, 323, 1718–1722.

    Article  Google Scholar 

  8. Burns, J. S.; Abdallah, B. M.; Guldberg, P.; Rygaard, J.; Schroder, H. D.; Kassem, M. Tumorigenic heterogeneity in cancer stem cells evolved from long-term cultures of telomerase-immortalized human mesenchymal stem cells. Cancer Res. 2005, 65, 3126–3135.

    Google Scholar 

  9. Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751–760.

    Article  Google Scholar 

  10. Hughes, B. Antibody-drug conjugates for cancer: Poised to deliver? Nat. Rev. Drug Discov. 2010, 9, 665–667.

    Article  Google Scholar 

  11. Zhu, G.; Ye, M.; Donovan, M. J.; Song, E.; Zhao, Z.; Tan, W. Nucleic acid aptamers: An emerging frontier in cancer therapy. Chem. Comm. 2012, 10472–10480.

    Google Scholar 

  12. Santra, S.; Kaittanis, C.; Santiesteban, O. J.; Perez, J. M. Cellspecific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc. 2011, 133, 16680–16688.

    Article  Google Scholar 

  13. Ellington, A. D.; Szostak, J. W. In vitro selection of rna molecules that bind specific ligands. Nature 1990, 346, 818–822.

    Article  Google Scholar 

  14. Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science 1990, 249, 505–510.

    Article  Google Scholar 

  15. Shangguan, D. H.; Li, Y.; Tang, Z. W.; Cao, Z.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11838–11843.

    Article  Google Scholar 

  16. Sefah, K.; Tang, Z.; Shangguan, D.; Chen, H.; Lopez-Colon, D.; Li, Y.; Parekh, P.; Martin, J.; Meng, L.; Phillips, J. A. et al. Molecular recognition of acute myeloid leukemia using aptamers. Leukemia 2009, 23, 235–244.

    Article  Google Scholar 

  17. Tang, Z.; Shangguan, D. H.; Wang, K.; Shi, H.; Sefah, K.; Mallikaratchy, P.; Chen, H. W.; Li, Y.; Tan, W. Selection of aptamers for molecular recognition and characterization of cancer cells. Anal. Chem. 2007, 79, 4900–4907.

    Article  Google Scholar 

  18. Group, T. E. S. Preclinical and phase 1a clinical evaluation of an anti-vegf pegylated aptamer (eye001) for the treatment of exudative age-related macular degeneration. Retina 2002, 2, 143–152.

    Google Scholar 

  19. Keefe, A. D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550.

    Article  Google Scholar 

  20. Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 2010, 9, 615–627.

    Article  Google Scholar 

  21. MacDiarmid, J. A.; Amaro-Mugridge, N. B.; Madrid-Weiss, J.; Sedliarou, I.; Wetzel, S.; Kochar, K.; Brahmbhatt, V. N.; Phillips, L.; Pattison, S. T.; Petti, C. et al. Sequential treatment of drug-resistant tumors with targeted minicells containing sirna or a cytotoxic drug. Nat. Biotechnol. 2009, 27, 643–651.

    Article  Google Scholar 

  22. Jiang, Q.; Song, C.; Nangreave, J.; Liu, X. W.; Lin, L.; Qiu, D. L.; Wang, Z. G.; Zou, G. Z.; Liang, X. J.; Yan, H. et al. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc. 2012, 134, 13396–13403.

    Article  Google Scholar 

  23. Wang, F.; Wang, Y. C.; Dou, S.; Xiong, M. H.; Sun, T. M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano 2011, 5, 3679–3692.

    Article  Google Scholar 

  24. Li, R.; Wu, R.; Zhao, L.; Wu, M.; Yang, L.; Zou, H. P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS Nano 2010, 4, 1399–1408.

    Article  Google Scholar 

  25. Chow, E. K.; Zhang, X. Q.; Chen, M.; Lam, R.; Robinson, E.; Huang, H.; Schaffer, D.; Osawa, E.; Goga, A.; Ho, D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 2011, 3, 73ra21.

  26. Meng, H.; Mai, W. X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J. I. et al. Codelivery of an optimal drug/sirna combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013, 7, 994–1005.

    Article  Google Scholar 

  27. Xue, X.; Hall, M. D.; Zhang, Q.; Wang, P. C.; Gottesman, M. M.; Liang, X. J. Nanoscale drug delivery platforms overcome platinum-based resistance in cancer cells due to abnormal membrane protein trafficking. ACS Nano 2013, 7, 10452–10464.

    Article  Google Scholar 

  28. Yang, L.; Meng, L.; Zhang, X. B.; Chen, Y.; Zhu, G. Z.; Liu, H. P.; Xiong, X. L.; Sefah, K.; Tan, W. H. Engineering polymeric aptamers for selective cytotoxicity. J. Am. Chem. Soc. 2011, 133, 13380–13386.

    Article  Google Scholar 

  29. Wu, C. C.; Han, D.; Chen, T.; Peng, L.; Zhu, G. Z.; You, M. X.; Qiu, L. P.; Sefah, K.; Zhang, X. B.; Tan, W. H. Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J. Am. Chem. Soc. 2013, 135, 18644–18650.

    Article  Google Scholar 

  30. Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y. J.; Liu, H.; Huang, Y. F.; Zhang, X.; Tan, W. Near-infrared light-responsive core-shell nanogels for targeted drug delivery. ACS Nano 2011, 5, 5094–5099.

    Article  Google Scholar 

  31. Bhirde, A. A.; Chikkaveeraiah, B. V.; Srivatsan, A.; Niu, G.; Jin, A. J.; Kapoor, A.; Wang, Z.; Patel, S.; Patel, V.; Gorbach, A. M. et al. Targeted therapeutic nanotubes influence the viscoelasticity of cancer cells to overcome drug resistance. ACS Nano 2014, 8, 4177–4189.

    Article  Google Scholar 

  32. Seeman, N. C. Nanomaterials based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87.

    Article  Google Scholar 

  33. Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. H. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory cpg oligonucleotides. ACS nano 2011, 5, 8783–8789.

    Article  Google Scholar 

  34. Zhu, G. Z.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K. J.; Liu, C.; Tan, W. H. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 7998–8003.

    Article  Google Scholar 

  35. Zhu, G.; Meng, L.; Ye, M.; Yang, L.; Sefah, K.; O’ Donoghue, M. B.; Chen, Y.; Xiong, X.; Huang, J.; Song, E. et al. Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chem. Asian J. 2012, 7, 1630–1636.

    Article  Google Scholar 

  36. Lee, H.; Lytton-Jean, A. K. R.; Chen, Y.; Love, K. T.; Park, A. I.; Karagiannis, E. D.; Sehgal, A.; Querbes, W.; Zurenko, C. S.; Jayaraman, M. et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol. 2012, 7, 389–393.

    Article  Google Scholar 

  37. Zhu, G. Z.; Hu, R.; Zhao, Z. L.; Chen, Z.; Zhang, X. B.; Tan, W. H. Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc. 2013, 135, 16438–16445.

    Article  Google Scholar 

  38. Shopsowitz K.; Roh Y.; Deng Z.; Morton S.; Hammond P. RNAi-microsponges form through self-assembly of the organic and inorganic products of transcription. Small 2014, 10, 1623–1633.

    Article  Google Scholar 

  39. Bagalkot, V.; Farokhzad, O. C.; Langer, R.; Jon, S. An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew. Chem. Int. Ed. 2006, 45, 8149–8152.

    Article  Google Scholar 

  40. Tamkovich, S. N.; Cherepanova, A. V.; Kolesnikova, E. V.; Rykova, E. Y.; Pyshnyi, D. V.; Vlassov, V. V.; Laktionov, P. P. Circulating DNA and dnase activity in human blood. Ann. N Y Acad. Sci. 2006, 1075, 191–196.

    Article  Google Scholar 

  41. Clarke, R.; Currier, S.; Kaplan, O.; Lovelace, E.; Boulay, V.; Gottesman, M. M.; Dickson, R. B. Effect of p-glycoprotein expression on sensitivity to hormones in mcf-7 human breast cancer cells. J. Natl. Cancer Inst. 1992, 84, 1506–1512.

    Article  Google Scholar 

  42. Langer, R.; Folkman, J. Polymers for the sustained release of proteins and other macromolecules. Nature 1976, 263, 797–800.

    Article  Google Scholar 

  43. Alama, A.; Barbieri, F.; Cagnoli, M.; Schettini, G. Antisense oligonucleotides as therapeutic agents. Pharmacol. Res. 1997, 36, 171–178.

    Article  Google Scholar 

  44. Liu, H.; Moynihan, K. D.; Zheng, Y.; Szeto, G. L.; Li, A. V.; Huang, B.; Van Egeren, D. S.; Park, C.; Irvine, D. J. Structure-based programming of lymph-node targeting in molecular vaccines. Nature 2014, 507, 519–522.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaobing Zhang or Weihong Tan.

Additional information

These authors contributed equally.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, L., Zhu, G., Qiu, L. et al. Self-assembled multifunctional DNA nanoflowers for the circumvention of multidrug resistance in targeted anticancer drug delivery. Nano Res. 8, 3447–3460 (2015). https://doi.org/10.1007/s12274-015-0841-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0841-8

Keywords

Navigation