Nano Research

, Volume 8, Issue 4, pp 1250–1258 | Cite as

Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes

  • Dmitry G. Kvashnin
  • Péter Vancsó
  • Liubov Yu. Antipina
  • Géza I. Márk
  • László P. Biró
  • Pavel B. Sorokin
  • Leonid A. Chernozatonskii
Research Article

Abstract

We present a theoretical study of new nanostructures based on bilayered graphene with periodically arranged hexagonal holes (bilayered graphene antidots). Our ab initio calculations show that fabrication of hexagonal holes in bigraphene leads to connection of the neighboring edges of the two graphene layers with formation of a hollow carbon nanostructure sheet which displays a wide range of electronic properties (from semiconductor to metallic), depending on the size of the holes and the distance between them. The results were additionally supported by wave packet dynamical transport calculations based on the numerical solution of the time-dependent Schrödinger equation.

Keywords

gaphene antidots electronic properties DFT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D; Zhang Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.CrossRefGoogle Scholar
  2. [2]
    Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.CrossRefGoogle Scholar
  3. [3]
    McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503.CrossRefGoogle Scholar
  4. [4]
    McCann, E.; Fal’ko, V. I. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805.CrossRefGoogle Scholar
  5. [5]
    Chernozatonskii, L. A.; Sorokin, P. B.; Brüning, J. W. Two-dimensional semiconducting nanostructures based on single graphenesheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 2007, 91, 183103.CrossRefGoogle Scholar
  6. [6]
    Chernozatonskii, L. A.; Sorokin, P. B.; Belova, E. É.; Brüning, J.; Fedorov, A. S. Superlatticesconsisting of “lines” of adsorbed hydrogen atom pairs on graphene. JETP Lett. 2007, 85, 77–81.CrossRefGoogle Scholar
  7. [7]
    Chernozatonskii, L. A.; Sorokin, P. B. Nanoengineeringstructures on graphenewith adsorbed hydrogen “lines”. J. Phys. Chem. C 2010, 114, 3225–3229.CrossRefGoogle Scholar
  8. [8]
    Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.CrossRefGoogle Scholar
  9. [9]
    Liu, X. F.; Zhang, Z. H.; Guo, W. L. Universal rule on chirality-dependent bandgapsin grapheneantidotlattices. Small 2013, 9, 1405–1410.CrossRefGoogle Scholar
  10. [10]
    Pedersen, T. G.; Flindt, C.; Pedersen, J.; Jauho, A.-P.; Mortensen, N. A.; Pedersen, K. Optical properties of grapheneantidotlattices. Phys. Rev. B 2008, 77, 243431.Google Scholar
  11. [11]
    McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.CrossRefGoogle Scholar
  12. [12]
    Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographicallyselective nanopatterningof grapheneon SiO2. Nano Res. 2010, 3, 110–116.CrossRefGoogle Scholar
  13. [13]
    Dobrik, G.; Nemes-Incze, P.; Tapasztó, L.; Lambin, P.; Biró, L. P. Nanoscalelithography of graphenewith crystallographic orientation control. Physica E 2012, 44, 971–975.CrossRefGoogle Scholar
  14. [14]
    Lee, J.-H.; Jang, Y.; Heo, K.; Lee, J.-M.; Choi, S. H.; Joo, W.-J.; Hwang, S. W.; Whang, D. Large-scale fabrication of 2D nanoporousgrapheneusing a thin anodic aluminum oxide etching mask. J. Nanosci.Nanotechnol. 2013, 13, 7401–7405.CrossRefGoogle Scholar
  15. [15]
    Zubeltzu, J.; Chuvilin, A.; Corsetti, F.; Zurutuza, A.; Artacho, E. Knock-on damage in bilayer graphene: Indications for a catalytic pathway. Phys. Rev. B 2013, 88, 245407.CrossRefGoogle Scholar
  16. [16]
    Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphenenanomesh. Nat. Nanotechnol. 2010, 5, 190–194.CrossRefGoogle Scholar
  17. [17]
    Dvorak, M.; Oswald, W.; Wu, Z. G. Bandgapopening by patterning graphene. Sci. Rep. 2013, 3, 2289.CrossRefGoogle Scholar
  18. [18]
    Pedersen, T. G.; Flindt, C.; Pedersen, J.; Mortensen, N. A.; Jauho, A.-P.; Pedersen, K. Grapheneantidotlattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.CrossRefGoogle Scholar
  19. [19]
    Ouyang, F. P.; Peng, S. L.; Liu, Z. F.; Liu, Z. R. Bandgapopening in grapheneantidotlattices: The missing half. ACS Nano 2011, 5, 4023–4030.CrossRefGoogle Scholar
  20. [20]
    Fürst, J. A.; Pedersen, J. G.; Flindt, C.; Mortensen, N. A.; Brandbyge, M.; Pedersen, T. G.; Jauho, A.-P. Electronic properties of grapheneantidotlattices. New J. Phys. 2009, 11, 095020.CrossRefGoogle Scholar
  21. [21]
    Sinitskii, A.; Tour, J. M. Patterning graphenethrough the self-assembled templates: Toward periodic two-dimensional graphenenanostructures with semiconductor properties. J. Am. Chem. Soc. 2010, 132, 14730–14732.CrossRefGoogle Scholar
  22. [22]
    Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforatedgraphenematerials. Nano Lett. 2010, 10, 1125–1131.CrossRefGoogle Scholar
  23. [23]
    Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphenelayers. Phys. Rev. Lett. 2009, 102, 015501.Google Scholar
  24. [24]
    Campos-Delgado, J.; Kim, Y. A.; Hayashi, T.; Morelos-Gómez, A.; Hofmann, M.; Muramatsu, H.; Endo, M.; Terrones, H.; Shull, R. D.; Dresselhaus, M. S.; et al. Thermal stability studies of CVD-grown graphenenanoribbons: Defect annealing and loop formation. Chem.Phys.Lett. 2009, 469, 177–182.CrossRefGoogle Scholar
  25. [25]
    Algara-Siller, G.; Santana, A.; Onions, R.; Suyetin, M.; Biskupek, J.; Bichoutskaia, E.; Kaiser, U. Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene. Carbon 2013, 65, 80–86.CrossRefGoogle Scholar
  26. [26]
    Zhan, D.; Liu, L.; Xu, Y. N.; Ni, Z. H.; Yan, J. X.; Zhao, C.; Shen, Z. X. Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges. Sci. Rep. 2011, 1, 12.CrossRefGoogle Scholar
  27. [27]
    Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The siesta method for abinitioorder-Nmaterials simulation. J. Phys.: Condens. Mat. 2002, 14, 2745–2779.Google Scholar
  28. [28]
    Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.CrossRefGoogle Scholar
  29. [29]
    Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.CrossRefGoogle Scholar
  30. [30]
    Garraway, B. M.; Suominen, K.-A. Wave-packet dynamics: New physics and chemistry in femto-time. Rep. Prog. Phys. 1995, 58, 365–419.CrossRefGoogle Scholar
  31. [31]
    Vancsó, P.; Márk, G. I.; Lambin, P.; Mayer, A.; Hwang, C.; Biró, L. P. Effect of the disorder in graphenegrain boundaries: Awave packet dynamics study. Appl. Surf. Sci. 2014, 291, 58–63.CrossRefGoogle Scholar
  32. [32]
    Mayer, A. Band structure and transport properties of carbon nanotubes using a local pseudopotentialand a transfer-matrix technique. Carbon 2004, 42, 2057–2066.CrossRefGoogle Scholar
  33. [33]
    Mayer, A. Transfer-matrix simulations of electronic transport in single-wall and multi-wall carbon nanotubes. Carbon 2005, 43, 717–726.CrossRefGoogle Scholar
  34. [34]
    Vancsó, P.; Márk, G. I.; Lambin, P.; Mayer, A.; Kim, Y. S.; Hwang, C.; Biró, L. P. Electronic transport through ordered and disordered graphenegrain boundaries. Carbon 2013, 64, 101–110.CrossRefGoogle Scholar
  35. [35]
    Márk, G. I.; Biró, L. P.; Gyulai, J. Simulation of STMimages of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes. Phys. Rev. B 1998, 58, 12645–12648.CrossRefGoogle Scholar
  36. [36]
    Márk, G. I.; Vancsó, P.; Hwang, C.; Lambin, P.; Biró, L. P. Anisotropic dynamics of charge carriers in graphene. Phys. Rev. B 2012, 85, 125443.CrossRefGoogle Scholar
  37. [37]
    Scuracchio, P.; Dobry, A. Bending mode fluctuations and structural stability of graphenenanoribbons. Phys. Rev. B 2013, 87, 165411.CrossRefGoogle Scholar
  38. [38]
    Kit, O. O.; Tallinen, T.; Mahadevan, L.; Timonen, J.; Koskinen, P. Twisting graphenenanoribbonsinto carbon nanotubes. Phys. Rev. B 2012, 85, 085428.CrossRefGoogle Scholar
  39. [39]
    Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127, 5990–5995.CrossRefGoogle Scholar
  40. [40]
    Timmermans, M. Y.; Estrada, D.; Nasibulin, A. G.; Wood, J. D.; Behnam, A.; Sun, D.-M.; Ohno, Y.; Lyding, J. W.; Hassanien, A.; Pop, E.; et al. Effect of carbon nanotube network morphology on thin film transistor performance. Nano Res. 2012, 5, 307–319.CrossRefGoogle Scholar
  41. [41]
    Chernozatonskii, L. A.; Demin, V. A. Nanotube connections in bilayer graphene with elongated holes. In Proceedings of the International Conference in Nanomaterials: Applications and Properties, Alushta, the Crimea, 2013, pp. 03NCNN32-03NCNN34.Google Scholar
  42. [42]
    Chernozatonskii, L. A.; Demin, V. A.; Artyukh, A. A. Bigraphenenanomeshes: Structure, properties, and formation. JETP Lett. 2014, 99, 309–314.CrossRefGoogle Scholar
  43. [43]
    Chernozatonskii, L. A. Carbon nanotube connectors and planar jungle gyms. Phys. Lett. A 1992, 172, 173–176.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dmitry G. Kvashnin
    • 1
  • Péter Vancsó
    • 2
  • Liubov Yu. Antipina
    • 3
  • Géza I. Márk
    • 2
  • László P. Biró
    • 2
  • Pavel B. Sorokin
    • 1
    • 3
  • Leonid A. Chernozatonskii
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsMoscowRussia
  2. 2.Institute of Technical Physics and Materials ScienceResearch Centre for Natural SciencesBudapestHungary
  3. 3.Technological Institute of Superhard and Novel Carbon MaterialsTroitsk, MoscowRussia

Personalised recommendations