Skip to main content
Log in

Elevating mitochondrial reactive oxygen species by mitochondria-targeted inhibition of superoxide dismutase with a mesoporous silica nanocarrier for cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In the intrinsic pathway of apoptosis, stresses of mitochondrial reactive oxygen species (mitoROS) might be sensed as more effective signals than those in cytosol, as mitochondria are the major sources of reactive oxygen species (ROS) and pivotal components during cell apoptosis. Mitochondrial superoxide dismutase (SOD2) takes the leading role in eliminating mitoROS, and inhibition of SOD2 might induce severe disturbances overwhelming the mitochondrial oxidative equilibrium, which would elevate the intracellular oxidative stresses and drive cells to death. Herein, we report a general strategy to kill cancer cells by targeted inhibition of SOD2 using 2-methoxyestradiol (2-ME, an inhibitor for the SOD family) via a robust mitochondria-targeted mesoporous silica nanocarrier (mtMSN), with the expected elevation of mitoROS and activation of apoptosis in HeLa cells. Fe3O4@MSN was employed in the mitochondria-targeted drug delivery and selective inhibition of mitochondrial enzymes, and was shown to be stable with good biocompatibility and high loading capacity. Due to the selective inhibition of SOD2 by 2-ME/mtMSN, enhanced elevation of mitoROS (132% of that with free 2-ME) was obtained, coupled with higher efficiency in initiating cell apoptosis (395% of that with free 2-ME in 4 h). Finally, the 2-ME/mtMSN exhibited powerful efficacy in targeted killing of HeLa cells by taking advantage of both biological recognition and magnetic guiding, causing 97.0% cell death with only 2 μg/mL 2-ME/mtMSN, hinting at its great potential in cancer therapy through manipulation of the delicate mitochondrial oxidative balance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sena, L. A.; Chandel, N. S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 2012, 48, 158–167.

    Article  Google Scholar 

  2. Yang, Y.; Song, Y.; Loscalzo, J. Regulation of the protein disulfide proteome by mitochondria in mammalian cells. Proc. Natl. Acad. Sci. USA 2007, 104, 10813–10817.

    Article  Google Scholar 

  3. Hamanaka, R. B.; Chandel, N. S. Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 2010, 35, 505–513.

    Article  Google Scholar 

  4. Simon, H.-U.; Haj-Yehia, A.; Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 2000, 5, 415–418.

    Article  Google Scholar 

  5. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.

    Article  Google Scholar 

  6. Wang, J.; Yi, J. Cancer cell killing via ROS: To increase or decrease, that is the question. Cancer Biol. Ther. 2008, 7, 1875–1884.

    Article  Google Scholar 

  7. Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591.

    Article  Google Scholar 

  8. Watson, J. Oxidants, antioxidants and the current incurability of metastatic cancers. Open Biol. 2013, 3, 120144.

    Article  Google Scholar 

  9. Qi, Y.; Tian, X.; Liu, J.; Han, Y.; Graham, A. M.; Simon, M. C.; Penninger, J. M.; Carmeliet, P.; Li, S. Bnip3 and AIF cooperate to induce apoptosis and cavitation during epithelial morphogenesis. J. Cell Biol. 2012, 198, 103–114.

    Article  Google Scholar 

  10. Scherz-Shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 2007, 26, 1749–1760.

    Article  Google Scholar 

  11. Zorov, D. B.; Juhaszova, M.; Sollott, S. J. Mitochondrial ROS-induced ROS release: An update and review. BBA-Bioenergetics. 2006, 1757, 509–517.

    Article  Google Scholar 

  12. Miwa, S.; Brand, M. D. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem. Soc. Trans. 2003, 31, 1300–1301.

    Article  Google Scholar 

  13. Pelicano, H.; Feng, L.; Zhou, Y.; Carew, J. S.; Hileman, E. O.; Plunkett, W.; Keating, M. J.; Huang, P. Inhibition of mitochondrial respiration: A novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J. Biol. Chem. 2003, 278, 37832–37839.

    Article  Google Scholar 

  14. Kirshner, J. R.; He, S.; Balasubramanyam, V.; Kepros, J.; Yang, C.-Y.; Zhang, M.; Du, Z.; Barsoum, J.; Bertin, J. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 2008, 7, 2319–2327.

    Article  Google Scholar 

  15. Bragado, P.; Armesilla, A.; Silva, A.; Porras, A. Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation. Apoptosis 2007, 12, 1733–1742.

    Article  Google Scholar 

  16. Huang, P.; Feng, L.; Oldham, E. A.; Keating, M. J.; Plunkett, W. Superoxide dismutase as a target for the selective killing of cancer cells. Nature 2000, 407, 390–395.

    Article  Google Scholar 

  17. Zelko, I. N.; Mariani, T. J.; Folz, R. J. Superoxide dismutase multigene family: A comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radical Biol. Med. 2002, 33, 337–349.

    Article  Google Scholar 

  18. Kamata, H.; Honda, S.-i.; Maeda, S.; Chang, L. F.; Hirata, H.; Karin, M. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 2005, 120, 649–661.

    Article  Google Scholar 

  19. Derfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Intracellular delivery of quantum dots for live cell labeling and organelle tracking. Adv. Mater. 2004, 16, 961–966.

    Article  Google Scholar 

  20. Paunesku, T.; Vogt, S.; Lai, B.; Maser, J.; Stojićević, N.; Thurn, K. T.; Osipo, C.; Liu, H.; Legnini, D.; Wang, Z. et al. Intracellular distribution of TiO2-DNA oligonucleotide nanoconjugates directed to nucleolus and mitochondria indicates sequence specificity. Nano Lett. 2007, 7, 596–601.

    Article  Google Scholar 

  21. Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288–16293.

    Article  Google Scholar 

  22. Wang, L. M.; Liu, Y.; Li, W.; Jiang, X. M.; Ji, Y. L.; Wu, X. C.; Xu, L. G.; Qiu, Y.; Zhao, K.; Wei, T. T. et al. Selective targeting of gold nanorods at the mitochondria of cancer cells: Implications for cancer therapy. Nano Lett. 2011, 11, 772–780.

    Article  Google Scholar 

  23. Boddapati, S. V.; D’Souza, G. G. M.; Erdogan, S.; Torchilin, V. P.; Weissig, V. Organelle-targeted nanocarriers: Specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 2008, 8, 2559–2563.

    Article  Google Scholar 

  24. Farokhzad, O. C.; Langer, R. L. Impact of nanotechnology on drug delivery. ACS Nano 2009, 3, 16–20.

    Article  Google Scholar 

  25. Cheng, H.; Kastrup, C. J.; Ramanathan, R.; Siegwart, D. J.; Ma, M. L.; Bogatyrev, S. R.; Xu, Q. B.; Whitehead, K. A.; Langer, R.; Anderson, D. G. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery. ACS Nano 2010, 4, 625–631.

    Article  Google Scholar 

  26. Tarn, D.; Ashley, C. E.; Xue, M.; Carnes, E. C.; Zink, J. I.; Brinker, C. J. Mesoporous silica nanoparticle nanocarriers: Biofunctionality and biocompatibility. Acc. Chem. Res. 2013, 46, 792–801.

    Article  Google Scholar 

  27. Pan, L. M.; He, Q. J.; Liu, J. N.; Chen, Y.; Ma, M.; Zhang, L. L.; Shi, J. L. Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J. Am. Chem. Soc. 2012, 134, 5722–5725.

    Article  Google Scholar 

  28. Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macro molecular therapeutics: A review. J. Control. Release 2000, 65, 271–284.

    Article  Google Scholar 

  29. Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliver. Rev. 2008, 60, 1615–1626.

    Article  Google Scholar 

  30. Sun, C.; Lee, J. S. H.; Zhang, M. Q. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliver. Rev. 2008, 60, 1252–1265.

    Article  Google Scholar 

  31. Li, R. B.; Wu, R. A.; Zhao, L.; Hu, Z. Y.; Guo, S. J.; Pan, X. L.; Zou, H. F. Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon 2011, 49, 1797–1805.

    Article  Google Scholar 

  32. Masters, J. R. Hela cells 50 years on: The good, the bad and the ugly. Nat. Rev. Cancer 2002, 2, 315–319.

    Article  Google Scholar 

  33. Tian, Y.; Yu, B. B.; Li, X.; Li, K. Facile solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents. J. Mater. Chem. 2011, 21, 2476–2481.

    Article  Google Scholar 

  34. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T. Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew. Chem. Int. Ed. 2008, 47, 8438–8441.

    Article  Google Scholar 

  35. Slowing, I. I.; Trewyn, B. G.; Giri, S.; Lin, V. S.-Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 2007, 17, 1225–1236.

    Article  Google Scholar 

  36. Hakem, R.; Hakem, A.; Duncan, G. S.; Henderson, J. T.; Woo, M.; Soengas, M. S.; Elia, A.; de la Pompa, J. L.; Kagi, D.; Khoo, W. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 1998, 94, 339–352.

    Article  Google Scholar 

  37. Sudimack, J.; Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliver. Rev. 2000, 41, 147–162.

    Article  Google Scholar 

  38. Veiseh, O.; Gunn, J. W.; Zhang, M. Q. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliver. Rev. 2010, 62, 284–304.

    Article  Google Scholar 

  39. Yang, X. Q.; Chen, Y. H.; Yuan, R. X.; Chen, G. H.; Blanco, E.; Gao, J. M.; Shuai, X. T. Folate-encoded and Fe3O4-loaded polymeric micelles for dual targeting of cancer cells. Polymer 2008, 49, 3477–3485.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ren’an Wu or Hanfa Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Hu, Z., Xu, G. et al. Elevating mitochondrial reactive oxygen species by mitochondria-targeted inhibition of superoxide dismutase with a mesoporous silica nanocarrier for cancer therapy. Nano Res. 7, 1103–1115 (2014). https://doi.org/10.1007/s12274-014-0473-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0473-4

Keywords

Navigation