Skip to main content

Advertisement

SpringerLink for Corporate & Health
Go to cart
  1. Home
  2. Nano Research
  3. Article
Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Low-temperature epitaxy of transferable high-quality Pd(111) films on hybrid graphene/Cu(111) substrate

28 August 2019

Zhihong Zhang, Xiaozhi Xu, … Kaihui Liu

Single process CVD growth of hBN/Graphene heterostructures on copper thin films

01 December 2018

Gene Siegel, Gordon Grzybowski, … Michael Snure

Intrinsic-trap-regulating growth of clean graphene on high-entropy alloy substrate

27 January 2022

Ning Cao, Peng Liu, … Xiaobei Zang

The role of surface morphology on nucleation density limitation during the CVD growth of graphene and the factors influencing graphene wrinkle formation

17 September 2019

Sajith Withanage, Tharanga Nanayakkara, … R. G. Mani

Adlayer-free large-area single-crystal CVD graphene growth on copper

31 October 2020

Chaitanya Arya, K. Kanishka H. De Silva & Masamichi Yoshimura

Preparation of Graphene on Copper Substrates of Various Geometries by Chemical Vapor Deposition

21 December 2018

E. V. Zaitsev, G. S. Bocharov, … E. S. Kurkina

Abnormal Grain Growth for Single-Crystal Cu Substrate and Chemical Vapor Deposition of Graphene on It

29 May 2020

Jungtae Nam, Imbok Lee, … Keun Soo Kim

Optimization of Parameters of Graphene Synthesis on Copper Foil at Low Methan Pressure

01 July 2018

V. E. Arkhipov, A. V. Gusel′nikov, … A. V. Okotrub

Fast Growth of Continuous Single-Crystal Graphene Film on Copper by Low-Pressure Chemical Vapor Deposition

12 June 2020

Haifen Xie, Jinming Zhang & Haichuan Mu

Download PDF
  • Open Access
  • Published: 18 January 2013

Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil

  • Neil R. Wilson1,
  • Alexander J. Marsden1,
  • Mohammed Saghir1,
  • Catherine J. Bromley2,
  • Renald Schaub2,
  • Giovanni Costantini3,
  • Thomas W. White3,
  • Cerianne Partridge3,
  • Alexei Barinov4,
  • Pavel Dudin4,
  • Ana M. Sanchez1,
  • James J. Mudd1,
  • Marc Walker1 &
  • …
  • Gavin R. Bell1 

Nano Research volume 6, pages 99–112 (2013)Cite this article

  • 4127 Accesses

  • 71 Citations

  • 1 Altmetric

  • Metrics details

Abstract

Graphene growth by low-pressure chemical vapor deposition on low cost copper foils shows great promise for large scale applications. It is known that the local crystallography of the foil influences the graphene growth rate. Here we find an epitaxial relationship between graphene and copper foil. Interfacial restructuring between graphene and copper drives the formation of (n10) facets on what is otherwise a mostly Cu(100) surface, and the facets in turn influence the graphene orientations from the onset of growth. Angle resolved photoemission shows that the electronic structure of the graphene is decoupled from the copper indicating a weak interaction between them. Despite this, two preferred orientations of graphene are found, ±8° from the Cu[010] direction, creating a non-uniform distribution of graphene grain boundary misorientation angles. Comparison with the model system of graphene growth on single crystal Cu(110) indicates that this orientational alignment is due to mismatch epitaxy. Despite the differences in symmetry the orientation of the graphene is defined by that of the copper. We expect these observations to not only have importance for controlling and understanding the growth process for graphene on copper, but also to have wider implications for the growth of two-dimensional materials on low cost metal substrates.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  2. Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y., et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  CAS  Google Scholar 

  3. An, J.; Voelkl, E.; Suk, J. W.; Li, X.; Magnuson, C. W.; Fu, L.; Tiemeijer, P.; Bischoff, M.; Freitag, B.; Popova, E., et al. Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene. ACS Nano 2011, 5, 2433–2439.

    Article  CAS  Google Scholar 

  4. Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5, 2142–2146.

    Article  CAS  Google Scholar 

  5. Yakobson, B. I.; Ding, F. Observational geology of graphene, at the nanoscale. ACS Nano 2011, 5, 1569–1574.

    Article  CAS  Google Scholar 

  6. Yu, Q.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D., et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.

    Article  CAS  Google Scholar 

  7. Malola, S.; Häkkinen, H.; Koskinen, P. Structural, chemical, and dynamical trends in graphene grain boundaries. Phys. Rev. B 2010, 81, 165447.

    Article  Google Scholar 

  8. Zhang, J.; Zhao, J.; Lu, J. Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano 2012, 6, 2704–2711.

    Article  CAS  Google Scholar 

  9. Grantab, R.; Shenoy, V. B.; Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948.

    Article  CAS  Google Scholar 

  10. Kumar, S. B.; Guo, J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 2012, 12, 1362–1366.

    Article  CAS  Google Scholar 

  11. Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

    Article  CAS  Google Scholar 

  12. Robinson, Z. R.; Tyagi, P.; Murray, T. M.; Ventrice, J. C. A.; Chen, S.; Munson, A.; Magnuson, C. W.; Ruoff, R. S. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films. J. Vac. Sci. Technol. A 2012, 30, 011401.

    Article  Google Scholar 

  13. Chen, S.; Cai, W.; Piner, R. D.; Suk, J. W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R. S. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 2011, 11, 3519–3525.

    Article  CAS  Google Scholar 

  14. Ishihara, M.; Koga, Y.; Kim, J.; Tsugawa, K.; Hasegawa, M. Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Mater. Lett. 2011, 65, 2864–2867.

    Article  CAS  Google Scholar 

  15. Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

    Article  CAS  Google Scholar 

  16. Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425.

    Article  Google Scholar 

  17. Zhao, L.; Rim, K. T.; Zhou, H.; He, R.; Heinz, T. F.; Pinczuk, A.; Flynn, G. W.; Pasupathy, A. N. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 2011, 151, 509–513.

    Article  CAS  Google Scholar 

  18. Gao, L.; Guest, J. R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.

    Article  CAS  Google Scholar 

  19. Ogawa, Y.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S.; Hibino, H.; Ago, H. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) Films. J. Phys. Chem. Lett. 2011, 3, 219–226.

    Article  Google Scholar 

  20. Orofeo, C. M.; Hibino, H.; Kawahara, K.; Ogawa, Y.; Tsuji, M.; Ikeda, K.-I.; Mizuno, S.; Ago, H. Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 2012, 50, 2189–2196.

    Article  CAS  Google Scholar 

  21. Wofford, J. M.; Nie, S.; McCarty, K. F.; Bartelt, N. C.; Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 2010, 10, 4890–4896.

    Article  CAS  Google Scholar 

  22. Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Continuity of graphene on polycrystalline copper. Nano Lett. 2010, 11, 251–256.

    Article  Google Scholar 

  23. Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R. S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 2012, 6, 2471–2476.

    Article  CAS  Google Scholar 

  24. Lee, C.; Li, Q.; Kalb, W.; Liu, X.-Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

    Article  CAS  Google Scholar 

  25. Tian, J.; Cao, H.; Wu, W.; Yu, Q.; Guisinger, N. P.; Chen, Y. P. Graphene induced surface reconstruction of Cu. Nano Lett. 2012, 12, 3893–3899.

    Article  CAS  Google Scholar 

  26. Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.

    Article  Google Scholar 

  27. Walter, A. L.; Nie, S.; Bostwick, A.; Kim, K. S.; Moreschini, L.; Chang, Y. J.; Innocenti, D.; Horn, K.; McCarty, K. F.; Rotenberg, E. Electronic structure of graphene on single-crystal copper substrates. Phys. Rev. B 2011, 84, 195443.

    Article  Google Scholar 

  28. Gartland, P. O.; Berge, S.; Slagsvold, B. J. Photoelectric work function of a copper single crystal for the (100), (110), (111), and (112) faces. Phys. Rev. Lett. 1972, 28, 738–739.

    Article  CAS  Google Scholar 

  29. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  Google Scholar 

  30. Quigley, D.; Rodger, P. M.; Freeman, C. L.; Harding, J. H.; Duffy, D. M. Metadynamics simulations of calcite crystallization on self-assembled monolayers. J. Chem. Phys. 2009, 131, 094703.

    Article  CAS  Google Scholar 

  31. Fölsch, S.; Helms, A.; Zöphel, S.; Repp, J.; Meyer, G.; Rieder, K. H. Self-organized patterning of an insulator-on-metal system by surface faceting and selective growth: NaCl/Cu(211). Phys. Rev. Lett. 2000, 84, 123–126.

    Article  Google Scholar 

  32. Murray, P. W.; Pedersen, M. Ø.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Growth of C60 on Cu(110) and Ni(110) surfaces: C60-induced interfacial roughening. Phys. Rev. B 1997, 55, 9360–9363.

    Article  CAS  Google Scholar 

  33. Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

    Article  CAS  Google Scholar 

  34. Dudin, P.; Lacovig, P.; Fava, C.; Nicolini, E.; Bianco, A.; Cautero, G.; Barinov, A. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the spectromicroscopy-3.2l beamline of Elettra. J. Synchotron Radiat. 2010, 17, 445–450.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Physics, University of Warwick, Coventry, CV4 7AL, UK

    Neil R. Wilson, Alexander J. Marsden, Mohammed Saghir, Ana M. Sanchez, James J. Mudd, Marc Walker & Gavin R. Bell

  2. EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, UK

    Catherine J. Bromley & Renald Schaub

  3. Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK

    Giovanni Costantini, Thomas W. White & Cerianne Partridge

  4. Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012, Basovizza, Trieste, Italy

    Alexei Barinov & Pavel Dudin

Authors
  1. Neil R. Wilson
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Alexander J. Marsden
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mohammed Saghir
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Catherine J. Bromley
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Renald Schaub
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Giovanni Costantini
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Thomas W. White
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Cerianne Partridge
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Alexei Barinov
    View author publications

    You can also search for this author in PubMed Google Scholar

  10. Pavel Dudin
    View author publications

    You can also search for this author in PubMed Google Scholar

  11. Ana M. Sanchez
    View author publications

    You can also search for this author in PubMed Google Scholar

  12. James J. Mudd
    View author publications

    You can also search for this author in PubMed Google Scholar

  13. Marc Walker
    View author publications

    You can also search for this author in PubMed Google Scholar

  14. Gavin R. Bell
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Neil R. Wilson.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Supplementary material, approximately 1.09 MB.

Supplementary material, approximately 1.56 MB.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wilson, N.R., Marsden, A.J., Saghir, M. et al. Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil. Nano Res. 6, 99–112 (2013). https://doi.org/10.1007/s12274-013-0285-y

Download citation

  • Received: 12 September 2012

  • Revised: 09 November 2012

  • Accepted: 03 December 2012

  • Published: 18 January 2013

  • Issue Date: February 2013

  • DOI: https://doi.org/10.1007/s12274-013-0285-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • graphene
  • chemical vapor deposition
  • mismatch epitaxy
  • structural feedback
  • low energy electron diffraction
  • angle resolved photo-emission spectroscopy (ARPES)
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • Your US state privacy rights
  • How we use cookies
  • Your privacy choices/Manage cookies
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.