Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil


Graphene growth by low-pressure chemical vapor deposition on low cost copper foils shows great promise for large scale applications. It is known that the local crystallography of the foil influences the graphene growth rate. Here we find an epitaxial relationship between graphene and copper foil. Interfacial restructuring between graphene and copper drives the formation of (n10) facets on what is otherwise a mostly Cu(100) surface, and the facets in turn influence the graphene orientations from the onset of growth. Angle resolved photoemission shows that the electronic structure of the graphene is decoupled from the copper indicating a weak interaction between them. Despite this, two preferred orientations of graphene are found, ±8° from the Cu[010] direction, creating a non-uniform distribution of graphene grain boundary misorientation angles. Comparison with the model system of graphene growth on single crystal Cu(110) indicates that this orientational alignment is due to mismatch epitaxy. Despite the differences in symmetry the orientation of the graphene is defined by that of the copper. We expect these observations to not only have importance for controlling and understanding the growth process for graphene on copper, but also to have wider implications for the growth of two-dimensional materials on low cost metal substrates.


  1. [1]

    Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    Article  CAS  Google Scholar 

  2. [2]

    Huang, P. Y.; Ruiz-Vargas, C. S.; van der Zande, A. M.; Whitney, W. S.; Levendorf, M. P.; Kevek, J. W.; Garg, S.; Alden, J. S.; Hustedt, C. J.; Zhu, Y., et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 2011, 469, 389–392.

    Article  CAS  Google Scholar 

  3. [3]

    An, J.; Voelkl, E.; Suk, J. W.; Li, X.; Magnuson, C. W.; Fu, L.; Tiemeijer, P.; Bischoff, M.; Freitag, B.; Popova, E., et al. Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene. ACS Nano 2011, 5, 2433–2439.

    Article  CAS  Google Scholar 

  4. [4]

    Kim, K.; Lee, Z.; Regan, W.; Kisielowski, C.; Crommie, M. F.; Zettl, A. Grain boundary mapping in polycrystalline graphene. ACS Nano 2011, 5, 2142–2146.

    Article  CAS  Google Scholar 

  5. [5]

    Yakobson, B. I.; Ding, F. Observational geology of graphene, at the nanoscale. ACS Nano 2011, 5, 1569–1574.

    Article  CAS  Google Scholar 

  6. [6]

    Yu, Q.; Jauregui, L. A.; Wu, W.; Colby, R.; Tian, J.; Su, Z.; Cao, H.; Liu, Z.; Pandey, D.; Wei, D., et al. Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat. Mater. 2011, 10, 443–449.

    Article  CAS  Google Scholar 

  7. [7]

    Malola, S.; Häkkinen, H.; Koskinen, P. Structural, chemical, and dynamical trends in graphene grain boundaries. Phys. Rev. B 2010, 81, 165447.

    Article  Google Scholar 

  8. [8]

    Zhang, J.; Zhao, J.; Lu, J. Intrinsic strength and failure behaviors of graphene grain boundaries. ACS Nano 2012, 6, 2704–2711.

    Article  CAS  Google Scholar 

  9. [9]

    Grantab, R.; Shenoy, V. B.; Ruoff, R. S. Anomalous strength characteristics of tilt grain boundaries in graphene. Science 2010, 330, 946–948.

    Article  CAS  Google Scholar 

  10. [10]

    Kumar, S. B.; Guo, J. Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 2012, 12, 1362–1366.

    Article  CAS  Google Scholar 

  11. [11]

    Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

    Article  CAS  Google Scholar 

  12. [12]

    Robinson, Z. R.; Tyagi, P.; Murray, T. M.; Ventrice, J. C. A.; Chen, S.; Munson, A.; Magnuson, C. W.; Ruoff, R. S. Substrate grain size and orientation of Cu and Cu-Ni foils used for the growth of graphene films. J. Vac. Sci. Technol. A 2012, 30, 011401.

    Article  Google Scholar 

  13. [13]

    Chen, S.; Cai, W.; Piner, R. D.; Suk, J. W.; Wu, Y.; Ren, Y.; Kang, J.; Ruoff, R. S. Synthesis and characterization of large-area graphene and graphite films on commercial Cu-Ni alloy foils. Nano Lett. 2011, 11, 3519–3525.

    Article  CAS  Google Scholar 

  14. [14]

    Ishihara, M.; Koga, Y.; Kim, J.; Tsugawa, K.; Hasegawa, M. Direct evidence of advantage of Cu(111) for graphene synthesis by using Raman mapping and electron backscatter diffraction. Mater. Lett. 2011, 65, 2864–2867.

    Article  CAS  Google Scholar 

  15. [15]

    Wood, J. D.; Schmucker, S. W.; Lyons, A. S.; Pop, E.; Lyding, J. W. Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 2011, 11, 4547–4554.

    Article  CAS  Google Scholar 

  16. [16]

    Nie, S.; Wofford, J. M.; Bartelt, N. C.; Dubon, O. D.; McCarty, K. F. Origin of the mosaicity in graphene grown on Cu(111). Phys. Rev. B 2011, 84, 155425.

    Article  Google Scholar 

  17. [17]

    Zhao, L.; Rim, K. T.; Zhou, H.; He, R.; Heinz, T. F.; Pinczuk, A.; Flynn, G. W.; Pasupathy, A. N. Influence of copper crystal surface on the CVD growth of large area monolayer graphene. Solid State Commun. 2011, 151, 509–513.

    Article  CAS  Google Scholar 

  18. [18]

    Gao, L.; Guest, J. R.; Guisinger, N. P. Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.

    Article  CAS  Google Scholar 

  19. [19]

    Ogawa, Y.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.-i.; Mizuno, S.; Hibino, H.; Ago, H. Domain structure and boundary in single-layer graphene grown on Cu(111) and Cu(100) Films. J. Phys. Chem. Lett. 2011, 3, 219–226.

    Article  Google Scholar 

  20. [20]

    Orofeo, C. M.; Hibino, H.; Kawahara, K.; Ogawa, Y.; Tsuji, M.; Ikeda, K.-I.; Mizuno, S.; Ago, H. Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon 2012, 50, 2189–2196.

    Article  CAS  Google Scholar 

  21. [21]

    Wofford, J. M.; Nie, S.; McCarty, K. F.; Bartelt, N. C.; Dubon, O. D. Graphene islands on Cu foils: The interplay between shape, orientation, and defects. Nano Lett. 2010, 10, 4890–4896.

    Article  CAS  Google Scholar 

  22. [22]

    Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Continuity of graphene on polycrystalline copper. Nano Lett. 2010, 11, 251–256.

    Article  Google Scholar 

  23. [23]

    Zhang, B.; Lee, W. H.; Piner, R.; Kholmanov, I.; Wu, Y.; Li, H.; Ji, H.; Ruoff, R. S. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. ACS Nano 2012, 6, 2471–2476.

    Article  CAS  Google Scholar 

  24. [24]

    Lee, C.; Li, Q.; Kalb, W.; Liu, X.-Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76–80.

    Article  CAS  Google Scholar 

  25. [25]

    Tian, J.; Cao, H.; Wu, W.; Yu, Q.; Guisinger, N. P.; Chen, Y. P. Graphene induced surface reconstruction of Cu. Nano Lett. 2012, 12, 3893–3899.

    Article  CAS  Google Scholar 

  26. [26]

    Khomyakov, P. A.; Giovannetti, G.; Rusu, P. C.; Brocks, G.; van den Brink, J.; Kelly, P. J. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 2009, 79, 195425.

    Article  Google Scholar 

  27. [27]

    Walter, A. L.; Nie, S.; Bostwick, A.; Kim, K. S.; Moreschini, L.; Chang, Y. J.; Innocenti, D.; Horn, K.; McCarty, K. F.; Rotenberg, E. Electronic structure of graphene on single-crystal copper substrates. Phys. Rev. B 2011, 84, 195443.

    Article  Google Scholar 

  28. [28]

    Gartland, P. O.; Berge, S.; Slagsvold, B. J. Photoelectric work function of a copper single crystal for the (100), (110), (111), and (112) faces. Phys. Rev. Lett. 1972, 28, 738–739.

    Article  CAS  Google Scholar 

  29. [29]

    Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109–162.

    Article  CAS  Google Scholar 

  30. [30]

    Quigley, D.; Rodger, P. M.; Freeman, C. L.; Harding, J. H.; Duffy, D. M. Metadynamics simulations of calcite crystallization on self-assembled monolayers. J. Chem. Phys. 2009, 131, 094703.

    Article  CAS  Google Scholar 

  31. [31]

    Fölsch, S.; Helms, A.; Zöphel, S.; Repp, J.; Meyer, G.; Rieder, K. H. Self-organized patterning of an insulator-on-metal system by surface faceting and selective growth: NaCl/Cu(211). Phys. Rev. Lett. 2000, 84, 123–126.

    Article  Google Scholar 

  32. [32]

    Murray, P. W.; Pedersen, M. Ø.; Lægsgaard, E.; Stensgaard, I.; Besenbacher, F. Growth of C60 on Cu(110) and Ni(110) surfaces: C60-induced interfacial roughening. Phys. Rev. B 1997, 55, 9360–9363.

    Article  CAS  Google Scholar 

  33. [33]

    Gao, J.; Yip, J.; Zhao, J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

    Article  CAS  Google Scholar 

  34. [34]

    Dudin, P.; Lacovig, P.; Fava, C.; Nicolini, E.; Bianco, A.; Cautero, G.; Barinov, A. Angle-resolved photoemission spectroscopy and imaging with a submicrometre probe at the spectromicroscopy-3.2l beamline of Elettra. J. Synchotron Radiat. 2010, 17, 445–450.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Neil R. Wilson.

Additional information

This article is published with open access at Springerlink.com

Electronic supplementary material

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Wilson, N.R., Marsden, A.J., Saghir, M. et al. Weak mismatch epitaxy and structural Feedback in graphene growth on copper foil. Nano Res. 6, 99–112 (2013). https://doi.org/10.1007/s12274-013-0285-y

Download citation


  • graphene
  • chemical vapor deposition
  • mismatch epitaxy
  • structural feedback
  • low energy electron diffraction
  • angle resolved photo-emission spectroscopy (ARPES)