Spatially resolved photoelectric performance of axial GaAs nanowire pn-diodes


The spatially resolved photoelectric response of a single axial GaAs nanowire pn-diode has been investigated with scanning photocurrent and Kelvin probe force microscopy. Optical generation of carriers at the pn-junction has been shown to dominate the photoresponse. A photocurrent of 88 pA, an open circuit voltage of 0.56 V and a fill factor of 69% were obtained under AM 1.5 G conditions. The photocurrent followed the increasing photoexcitation with 0.24 A/W up to an illumination density of at least 90 W/cm2, which is important for potential applications in concentrator solar cells.

This is a preview of subscription content, access via your institution.


  1. [1]

    Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

    Article  CAS  Google Scholar 

  2. [2]

    Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. -E.; Wernersson, L. -E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080–4085.

    Article  CAS  Google Scholar 

  3. [3]

    Wallentin, J.; Persson, J. M.; Wagner, J. B.; Samuelson, L.; Deppert, K.; Borgström, M. T. High-performance single nanowire tunnel diodes. Nano Lett. 2010, 10, 974–979.

    Article  CAS  Google Scholar 

  4. [4]

    Fuhrer, A.; Fröberg, L. E.; Pedersen, J. N.; Larsson, M. W.; Wacker, A.; Pistol, M. -E.; Samuelson, L. Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 2007, 7, 243–246.

    Article  CAS  Google Scholar 

  5. [5]

    Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, S.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639–1644.

    Article  CAS  Google Scholar 

  6. [6]

    Svensson, C. P. T.; Martensson, T.; Trägardh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 2008, 19, 305201.

    Article  Google Scholar 

  7. [7]

    Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

    Article  CAS  Google Scholar 

  8. [8]

    Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods. Adv. Mat. 2009, 21, 973–978.

    Article  CAS  Google Scholar 

  9. [9]

    Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quant. Electron. 2010, 99, 1–12.

    Google Scholar 

  10. [10]

    Heurlin, M.; Wickert, P.; Fält, S.; Borgström, M. T.; Deppert, K.; Samuelson, L.; Magnusson, M. H. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 2011, 11, 2028–2031.

    Article  CAS  Google Scholar 

  11. [11]

    Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G. Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449, 885–889.

    Article  CAS  Google Scholar 

  12. [12]

    Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J.; Zheng, X.; Lieber, C. M. Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

    Article  CAS  Google Scholar 

  13. [13]

    King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey, G. S.; Yoon, H.; Sherif, R. A.; Karam, N. H. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 2007, 90, 183516.

    Article  Google Scholar 

  14. [14]

    van Kouwen, M. P.; van Weert, M. H. M.; Reimer, M. E.; Akopian, N.; Perinetti, U.; Algra, R. E.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Single quantum dot nanowire photodetectors. Appl. Phys. Lett. 2010, 97, 113108.

    Article  Google Scholar 

  15. [15]

    Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express, 2009, 2, 035004.

    Article  Google Scholar 

  16. [16]

    Dong, Y.; Tian, B.; Kempa, T. J.; Lieber, C. M. Coaxial group III-Nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183–2187.

    Article  CAS  Google Scholar 

  17. [17]

    Colombo, C.; Heiß, M.; Grätzel, M.; Fontcuberta i Morral, A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.

    Article  Google Scholar 

  18. [18]

    Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core-shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

    Article  CAS  Google Scholar 

  19. [19]

    Karam, N. H.; Sherif, R. A.; King, R. R. Multijunction concentrator solar cells: An enabler for low-cost photovoltaic systems. In Concentrator Photovoltaics; Luque Lopéz, A. L.; Andreev, V. M., Eds. Springer: Berlin, 2007; p. 200.

    Google Scholar 

  20. [20]

    Wanlass, M. W.; Ahrenkiel, S. P.; Ahrenkiel, R. K.; Albin, D. S.; Carapella, J. J.; Duda, A.; Geisz, J. F.; Kurtz, S.; Moriarty, T. Lattice-mismatched approaches for high-performance, III–V, photovoltaic energy converters. In Proc. 31st IEEE Photovoltaic Specialists Conf., Lake Buene Vista, Florida, 2005; pp. 530–535.

    Google Scholar 

  21. [21]

    Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. -J. Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth. J. Appl. Phys. 2009, 105, 024305

    Article  Google Scholar 

  22. [22]

    Gutsche, C.; Lysov, A.; Regolin, I.; Blekker, K.; Prost, W.; Tegude, F. -J. n-type doping of vapor-liquid-solid grown GaAs nanowires. Nanoscale Res. Lett. 2011, 6, 65–70.

    Google Scholar 

  23. [23]

    Regolin, I.; Gutsche, C.; Lysov, A.; Blekker, K.; Li, Z. -A.; Spasova, M.; Prost, W.; Tegude, F. -J. Axial pn-junctions formed by MOVPE using DEZn and TESn in vapour-liquid-solid grown GaAs nanowires. J. Cryst. Growth 2011, 315, 143–147.

    Article  CAS  Google Scholar 

  24. [24]

    Lysov, A.; Offer, M.; Gutsche, C.; Regolin, I.; Topaloglu, M. Geller, S.; Prost, W.; Tegude, F. -J. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Nanotechnology, 2011, 22, 085702.

    Article  CAS  Google Scholar 

  25. [25]

    Nonnenmacher, M.; O’Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

    Article  Google Scholar 

  26. [26]

    Katzer, Kl. -D.; Mertin, W.; Bacher, G.; Jaeger, A.; Streubel, K. Voltage drop in an (AlxGa1−x )0.5In0.5P light-emitting diode probed by Kelvin probe force microscopy. Appl. Phys. Lett., 2006, 89, 103522.

    Article  Google Scholar 

  27. [27]

    Lévêque, G.; Girard, P.; Skouri, E.; Yarekha, D. Measurements of electric potential in a laser diode by Kelvin probe force microscopy. Appl. Surf. Sci. 2000, 157, 251–255.

    Article  Google Scholar 

  28. [28]

    Minot, E. D.; Kelkensberg, F.; van Kouwen, M.; van Dam, J. A.; Kouwenhoven, L. P.; Zwiller, V.; Borgström, M.; Wunnicke, O.; Verheijen, M. A.; Bakkers, E. P. A. M. Single quantum dot nanowire LEDs. Nano Lett. 2007, 7, 367–371.

    Article  CAS  Google Scholar 

  29. [29]

    Vinaji, S.; Lochthofen, A.; Mertin, W.; Regolin, I.; Gutsche, C.; Prost, W.; Tegude, F. J.; Bacher, G. Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy. Nanotechnology 2009, 20, 385702.

    Article  CAS  Google Scholar 

  30. [30]

    Koren, E.; Rosenwaks, Y.; Allen, J. E.; Hemesath, E. R.; Lauhon, L. J. Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 2009, 95, 092105.

    Article  Google Scholar 

  31. [31]

    Koren, E.; Hyun, J. K.; Givan, U.; Hemesath, E. R.; Lauhon, L. J.; Rosenwaks, Y. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Lett. 2011, 11, 183–187.

    Article  CAS  Google Scholar 

  32. [32]

    Robin, F.; Jacobs, H.; Homan, O.; Stemmer, A.; Bächtold, W. Investigation of the cleaved surface of a p-i-n laser using Kelvin probe force microscopy and two-dimensional physical simulations. Appl. Phys. Lett. 2000, 76, 2907–2909.

    Article  CAS  Google Scholar 

  33. [33]

    Bürgi, L.; Sirringhaus, H.; Friend, R. H. Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 2002, 80, 2913–2915.

    Article  Google Scholar 

  34. [34]

    Tiwari, S.; Wright, S. L. Material properties of p-type GaAs at large dopings. Appl. Phys. Lett. 1990, 56, 563–565.

    Article  CAS  Google Scholar 

  35. [35]

    Bingwen, L.; Yuanxi, Z.; Binglin, Z. Minority carrier diffusion lengths in bulk n-type GaAs. J. Elect. Mater. 1987, 16, 177–180.

    Article  Google Scholar 

  36. [36]

    Graham, R.; Miller, C.; Oh, E.; Yu, D. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano. Lett. 2011, 11, 717–722.

    Article  CAS  Google Scholar 

  37. [37]

    Luque, A. Hegedus, S. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, 2003. p.73.

  38. [38]

    Bohren, C.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley-VCH: New York, 1983; pp. 202–213.

    Google Scholar 

  39. [39]

    Brönstrup, G.; Jahr, N.; Leiterer, C.; Csάki, A.; Fritzsche, W.; Christiansen, S. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 2010, 4, 7113–7122.

    Article  Google Scholar 

  40. [40]

    Parkinson, P.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Zhang, X.; Zou, J.; Jagadish, C.; Herz, L. M.; Johnston, M. B. Carrier lifetime and mobility enhancement in nearly defect-free core-shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 2009, 9, 3349–3353.

    Article  CAS  Google Scholar 

  41. [41]

    LaPierre, R. R. Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 2011, 109, 034311.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Andrey Lysov.

Electronic supplementary material

Supplementary material, approximately 2.81 MB.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lysov, A., Vinaji, S., Offer, M. et al. Spatially resolved photoelectric performance of axial GaAs nanowire pn-diodes. Nano Res. 4, 987–995 (2011).

Download citation


  • GaAs
  • nanowire
  • solar cells
  • scanning photocurrent microscopy
  • Kelvin probe force microscopy
  • electroluminescence