Skip to main content
Log in

Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A water-soluble polyhydroxylated fullerene, i.e. a fullerenol, with 44 hydroxyl groups and 8 secondary bound water molecules, C60(OH)44·8H2O (estimated average structure), has been synthesized in a facile one step reaction from pristine C60 by hydroxylation with hydrogen peroxide in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydroxide (TBAH), under organic/aqueous bilayer conditions. The fullerenol exhibited high water solubility, up to 64.9 mg/mL, under neutral (pH = 7) conditions. Dynamic light-scattering (DLS) analysis showed a narrow particle size distribution, of 1–2 nm, indicating that the fullerenol had high dispersion properties in water. The results of particle size analyses, which both focused on a single nanoregion and were conducted using a novel induced grating (IG) method and a scanning probe microscope (SPM), were consistent with the DLS results. A plausible reaction mechanism, which includes fullerene oxide intermediates detected by liquid chromatography-mass spectrometry (LC-MS), has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao, F.; Liu, Y.; Qu, Y.; Li, W.; Zhou, G.; Ge, C.; Li, Y.; Sun, B.; Chen, C. Studies on anti-tumor and antimetastatic activities of fullerenol in a mouse breast cancer model. Carbon 2010, 48, 2231–2243.

    Article  CAS  Google Scholar 

  2. Xu, J. -Y.; Su, Y. -Y.; Cheng, J. -S.; Li, S. -X.; Liu, R.; Li, W. -X.; Xu, G. -T.; Li, Q. -N. Protective effects of fullerenol on carbon tetrachloride-induced acute hepatotoxicity and nephrotoxicity in rats. Carbon 2010, 48, 1388–1396.

    Article  CAS  Google Scholar 

  3. Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem. 2001, 12, 510–514.

    Article  CAS  Google Scholar 

  4. Chen, C.; Xing, G.; Wang, J.; Zhao, Y.; Li, B.; Tang, J.; Jia, G.; Wang, T.; Sun, J.; Xing, L.; Yuan, H.; Gao, Y.; Meng, H.; Chen, Z.; Zhao, F.; Chai, Z.; Fang, X. Multihydroxylated [Gd@C82(OH)22]n nanoparticles: Antineoplastic activity of high efficiency and low toxicity. Nano Lett. 2005, 5, 2050–2057.

    Article  CAS  Google Scholar 

  5. Aoshima, H.; Kokubo, K.; Shirakawa, S.; Ito, M.; Yamana, S.; Oshima, T. Antimicrobial activity of fullerenes and their hydroxylated derivatives. Biocontrol Sci. 2009, 14, 69–72.

    Article  CAS  Google Scholar 

  6. Chiang, L. Y.; Lu, F. -J.; Lin, J. -T. Free radical scavenging activity of water-soluble fulerenols. J. Chem. Soc., Chem. Commun. 1995, 1283–1284.

  7. Dugan, L. L.; Gabrielsen, J. K.; Yu, S. P.; Lin, T. -S.; Choi, D. W. Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Nerobiol. Dis. 1996, 3, 129–135.

    Article  CAS  Google Scholar 

  8. Sun, D.; Zhu, Y.; Liu, Z.; Liu, G.; Guo, X.; Zhan, R.; Liu, S. Active oxygen radical scavenging ability of water-soluble fullerenols. Chin. Sci. Bull. 1997, 42, 748–752.

    Article  CAS  Google Scholar 

  9. Lai, H. -S.; Chen, W. -J.; Chiang, L. -Y. Free radical scavenging activity of fullerenol on the iischemia-reperfusion intestine in dogs. World J. Surg. 2000, 24, 450–454.

    Article  CAS  Google Scholar 

  10. Guldi, D. M.; Asmus, K. -D. Activity of water-soluble fullerenes towards ·OH-radicals and molecular oxygen. Radiat. Phys. Chem. 1999, 56, 449–456.

    Article  CAS  Google Scholar 

  11. Xiao, L.; Takada, H.; Maeda, K.; Haramoto, M.; Miwa, N. Antioxidant effects of water-soluble fullerene derivatives against ultraviolet ray or peroxylipid through their action of scavenging the reactive oxygen species in human skin keratinocytes. Biomed. Pharmacother. 2005, 59, 351–358.

    Article  CAS  Google Scholar 

  12. Oberdörster, E. Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 2004, 112, 1058–1062.

    Article  Google Scholar 

  13. Chiang, L. Y.; Wang, L. -Y.; Swirczewski, J. W.; Soled, S.; Cameron, S. Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J. Org. Chem. 1994, 59, 3960–3968.

    Article  CAS  Google Scholar 

  14. Li, J.; Takeuchi, A.; Ozawa, M.; Li, X.; Saigo, K.; Kitazawa, K. C60 Fullerol formation catalysed by quaternary ammonium hydroxides. J. Chem. Soc. Chem. Commun. 1993, 1784–1785.

  15. Schneider, N. S.; Darwish, A. D.; Kroto, H. W.; Taylor R.; Walton, D. R. M. Formation of fullerenols via hydroboration of fullerene-C60. J. Chem. Soc., Chem. Commun. 1994, 463–464.

  16. Arrais, A.; Diana, E. Highly water soluble C60 derivatives: A new synthesis. Fuller. Nanotub. Carbon Nanostruct. 2003, 11, 35–46.

    Article  CAS  Google Scholar 

  17. Wang, S.; He, P.; Zhang, J. -M.; Jiang, H.; Zhu, S. -Z. Novel and efficient synthesis of water-soluble [60]fullerenol by solvent-free reaction. Synth. Commun. 2005, 35, 1803–1807.

    Article  CAS  Google Scholar 

  18. Vileno, B.; Marcoux, P. R.; Lekka, M.; Sienkiewicz, A.; Fehér, T.; Forró, L. Spectroscopic and photophysical properties of a highly deivatized C60 fullerol. Adv. Funct. Mater. 2006, 16, 120–128.

    Article  CAS  Google Scholar 

  19. Kokubo, K.; Matsubayashi, K.; Tategaki, H.; Takada, H.; Oshima, T. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2008, 2, 327–333.

    Article  CAS  Google Scholar 

  20. Zhang, G.; Liu, Y.; Liang, D.; Gan, L.; Li, Y. Facile synthesis of isomerically pure fullerenols and formation of spherical aggregates from C60(OH)8. Angew. Chem. Int. Ed. 2010, 49, 5293–5295.

    Article  CAS  Google Scholar 

  21. Husebo, L. O.; Sitharaman, B.; Furukawa, K.; Kato, T.; Wilson, L. J. Fullerenols revisited as stable radical anions. J. Am. Chem. Soc. 2004, 126, 12055–12064.

    Article  CAS  Google Scholar 

  22. Takaya, Y.; Tachika, H.; Hayashi, T.; Kokubo, K.; Suzuki, K. Performance of water-soluble fullerenol as novel functional molecular abrasive grain for polishing nanosurfaces. CIRP Ann.-Manuf. Tech. 2009, 58, 495–498.

    Article  Google Scholar 

  23. Saotome, T.; Kokubo, K.; Shirakawa, S.; Oshima, T.; Hahn, H. T. Polymer nanocomposites reinforced with C60 fullerene: Effect of hydroxylation. J. Compos. Mater., in press.

  24. Saitoh, Y.; Xiao, L.; Mizuno, H.; Kato, S.; Aoshima, H.; Taira, H.; Kokubo, K.; Miwa, N. Novel polyhydroxylated fullerene suppresses intracellular oxidative stress together with repression of intracellular lipid accumulation during the differentiation of OP9 preadipocytes into adipocytes. Free Radic. Res. 2010, 44, 1072–1081.

    Article  CAS  Google Scholar 

  25. Matsubayashi, K.; Kokubo, K.; Tategaki, H.; Kawahama, S.; Oshima, T. One-step synthesis of water-soluble fullerenols bearing nitrogen-containing substituents. Fuller. Nanotub. Carbon Nanostruct. 2009, 17, 440–456.

    Article  CAS  Google Scholar 

  26. Xing, G.; Zhang, J.; Zhao, Y.; Tang, J.; Zhang, B.; Gao, X.; Yuan, H.; Qu, L.; Cao, W.; Chai, Z.; Ibrahim, K.; Su, R. Influences of structural properties on stability of fullerenols. J. Phys. Chem. B 2004, 108, 11473–11479.

    Article  CAS  Google Scholar 

  27. She, Y. -M.; Tu, Y. -P.; Liu, S. -Y. C118 from fullerenols: Formation, structure and intermolecular nC2 transfer reactions in mass spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 676–678.

    Article  CAS  Google Scholar 

  28. Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W.; Soled, S. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J. Am. Chem. Soc. 1993, 115, 5453–5457.

    Article  CAS  Google Scholar 

  29. Troyanov, S. I.; Troshin, P. A.; Boltalina, O. V.; Ioffe, I. N.; Sidorov, L. N.; Kemnitz, E. Two isomers of C60F48: An indented fullerene. Angew. Chem. Int. Ed. 2010, 40, 2285–2287.

    Article  Google Scholar 

  30. Tuinman, A. A.; Mukherjee, P.; Adcock, J. L.; Hettich, R. L.; Compton, R. N. Characterization and stability of highly fluorinated fullerenes. J. Phys. Chem. 1992, 96, 7584–7589.

    Article  CAS  Google Scholar 

  31. Rivelino, R.; Malaspina, T.; Fileti, E. E. Structure, stability, depolarized light scattering, and vibrational spectra of fullerenols from all-electron density-functional-theory calculations. Phys. Rev. A 2009, 79, 013201.

    Article  Google Scholar 

  32. Ros, D. T.; Prato, M. Medicinal chemistry with fullerenes and fullerene derivatives. Chem. Commun. 1999, 663–669.

  33. Bolskar, R. D.; Benedetto, A. F.; Husebo, L. O.; Price, R. E.; Jackson, E. F.; Wallace, S.; Wilson, L. J.; Alford, J. M. First soluble M@C60 derivatives provide enhanced access to metallofullrenes and permit in vivo evaluation of Gd@C60[C(COOH)2]10 as a MRI contrast agent. J. Am. Chem. Soc. 2003, 125, 5471–5478.

    Article  CAS  Google Scholar 

  34. Mohan, H.; Palit, D. K.; Mittal, J. P.; Chiang, L. Y.; Asmus, K. -D.; Guldi, D. M. Excited states and electron transfer reactions of C60(OH)18 in aqueous solution. J. Chem. Soc., Faraday Trans. 1998, 94, 359–363.

    Article  CAS  Google Scholar 

  35. Wada, Y.; Totoki, S.; Watanabe, M.; Moriya, N.; Tsunazawa, Y.; Shimaoka, H. Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis. Opt. Express 2006, 14, 5755–5764.

    Article  Google Scholar 

  36. Everett, A. J.; Minkoff, G. J. The dissociation constants of some alkyl and acyl hydroperoxides. Trans. Faraday Soc. 1953, 49, 410–414.

    Article  CAS  Google Scholar 

  37. Gao, X.; Ishimura, K.; Nagase, S.; Chen, Z. Dichlorocarbene addition to C60 from the trichloromethyl anion: Carbene mechanism or Bingel mechanism? J. Phys. Chem. A 2009, 113, 3673–3676.

    Article  CAS  Google Scholar 

  38. Zhang, P.; Pan, H.; Liu, D.; Guo, Z. -X.; Zhang, F.; Zhu, D. Effective mechanochemical synthesis of [60]fullerols. Synth. Commun. 2003, 33, 2469–2474.

    Article  CAS  Google Scholar 

  39. Li, T.; Li, X.; Huang, K.; Jiang, H.; Li, J. Synthesis and characterization of hydroxylated fullerene epoxide—An intermediate for forming fullerol. J. Cent. South. Univ. Technol. 1999, 6, 35–36.

    Article  CAS  Google Scholar 

  40. Wang, F. F.; Li, N.; Tian, D.; Xia, G. F.; Xiao, N. Efficient synthesis of fullerenol in anion form for the preparation of electrodeposited films. ACS Nano 2010, 4, 5565–5572.

    Article  CAS  Google Scholar 

  41. Tajima, Y.; Takeuchi, K. Discovery of C60O3 isomer having C 3v symmetry. J. Org. Chem. 2002, 67, 1696–1698.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Kokubo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokubo, K., Shirakawa, S., Kobayashi, N. et al. Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res. 4, 204–215 (2011). https://doi.org/10.1007/s12274-010-0071-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0071-z

Keywords

Navigation