Skip to main content
Log in

Performance analysis of a ductless personalized ventilation combined with radiant floor cooling system and displacement ventilation

  • Research Article
  • Indoor/Outdoor Airflow and Air Quality
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

This study conducted the numerical simulation to evaluate the performance of a ductless personalized ventilation (DPV) combined with radiant floor cooling system (RFCS) and displacement ventilation (DV) system. In the non-DPV cases, DV supplies air at temperature of 16 °C and 20 °C, respectively with a flow rate of 2.4 ACH. In the cases with DPV, DPV supplies personalized air, which is drawn at the height of 0.1 m or 0.2 m above the floor, to the face of a seated occupant at flow rates of 3 L/s, 5 L/s and 7 L/s, respectively. The horizontal distance of 0.3 m is designed between DPV air supply opening and occupant face at the height of 1.2m. For all the cases, the floor cooling temperature is set to 20 °C. The vertical air temperature difference at 1.1 m and 0.1 m (ΔT1.1−0.1), the contaminant removal effectiveness (ε) and the draft rate at the occupant face (DRface) are mainly used as evaluation indices to quantify the ventilation effectiveness and thermal comfort effect. According to the results, DPV remarkably decreases ΔT1.1−0.1 with a maximum reduction of 1.79 °C compared to non-DPV case. DPV significantly influences the temperature adjacent to the face at the breathing zone, with a maximum reduction of 4.44 °C from non-DPV case to DPV case. DPV cases also effectively improve ε at breathing region compared to the non-DPV case. The DRface ranges from 9.01% to 21.33% when different flow rates of DPV are used. In summary, the case using DPV flow rate of 5 L/s and at intake height of 0.1 m presented relatively better ventilation effectiveness and thermal comfort environment around the occupant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed AQ, Gao S, Kareem AK (2017). Energy saving and indoor thermal comfort evaluation using a novel local exhaust ventilation system for office rooms. Applied Thermal Engineering, 110: 821–834.

    Article  Google Scholar 

  • Al Assaad D, Ghali K, Ghaddar N, Habchi C (2017). Mixing ventilation coupled with personalized sinusoidal ventilation: Optimal frequency and flow rate for acceptable air quality. Energy and Buildings, 154: 569–580.

    Article  Google Scholar 

  • Al Assaad D, Habchi C, Ghali K, Ghaddar N (2018a). Effectiveness of intermittent personalized ventilation in protecting occupant from indoor particles. Building and Environment, 128: 22–32.

    Article  Google Scholar 

  • Al Assaad D, Habchi C, Ghali K, Ghaddar N (2018b). Simplified model for thermal comfort, IAQ and energy savings in rooms conditioned by displacement ventilation aided with transient personalized ventilation. Energy Conversion and Management, 162: 203–217.

    Article  Google Scholar 

  • Alain M, Kamel G, Nesreen G (2012). A simplified combined displacement and personalized ventilation model. HVAC&R Research, 18: 737–749.

    Google Scholar 

  • Alotaibi S, Chakroun W, Habchi C, Ghali K, Ghaddar N (2018). Effectiveness of contaminant confinement in office spaces equipped with ceiling personalized ventilation system. Building Simulation, 11: 773–786.

    Article  Google Scholar 

  • Alsaad H, Voelker C (2018). Performance assessment of a ductless personalized ventilation system using a validated CFD model. Journal of Building Performance Simulation, 11: 689–704.

    Article  Google Scholar 

  • ANSYS (2014). ANSYS FLUENT Theory Guide, Release 16.1. Canonsburg, PA, USA: ANSYS Inc.

    Google Scholar 

  • ASHRAE (2004). ASHRAE Standard 55. Thermal Environmental Conditions for Human Occupancy, Atlanta, GA, USA: American Society of Heating Air-Conditioning and Refrigeration Engineers.

    Google Scholar 

  • ASHRAE (2009). ASHRAE Handbook—Fundamentals. Atlanta, GA, USA: American Society of Heating Air-Conditioning and Refrigeration Engineers.

    Google Scholar 

  • Bolashikov ZD, Nikolaev L, Melikov AK, Kaczmarczyk J, Fanger PO (2003). Personalized ventilation: Air terminal devices with high efficiency. In: Proceedings of the 7th Healthy Buildings, Singapore.

    Google Scholar 

  • Cao S-J, Deng H-Y (2019). Investigation of temperature regulation effects on indoor thermal comfort, air quality, and energy savings toward green residential buildings. Science and Technology for the Built Environment, 25: 309–321.

    Article  Google Scholar 

  • Causone F, Baldin F, Olesen BW, Corgnati SP (2010). Floor heating and cooling combined with displacement ventilation: Possibilities and limitations. Energy and Buildings, 42: 2338–2352.

    Article  Google Scholar 

  • Cermak R, Melikov AK, Forejt L, Kovar O (2006). Performance of personalized ventilation in conjunction with mixing and displacement ventilation. HVAC&R Research, 12: 295–311.

    Article  Google Scholar 

  • Cermak R, Melikov AK (2007). Protection of occupants from exhaled infectious agents and floor material emissions in rooms with personalized and underfloor ventilation. HVAC&R Research, 13: 23–38.

    Article  Google Scholar 

  • Cheong DKW, Huang S (2013). Performance evaluation of personalized ventilation system with two types of air terminal devices coupled with displacement ventilation in a mock-up office. HVAC&R Research, 19: 974–985.

    Article  Google Scholar 

  • Chui EH, Raithby GD (1993). Computation of radiant heat transfer on a nonorthogonal mesh using the finite-volume method. Numerical Heat Transfer, Part B: Fundamentals, 23: 269–288.

    Article  Google Scholar 

  • Dalewski M, Melikov AK, Vesely M (2014). Performance of ductless personalized ventilation in conjunction with displacement ventilation: Physical environment and human response. Building and Environment, 81: 354–364.

    Article  Google Scholar 

  • Du J, Chan M, Pan D, Deng S (2017). A numerical study on the effects of design/operating parameters of the radiant panel in a radiation-based task air conditioning system on indoor thermal comfort and energy saving for a sleeping environment. Energy and Buildings, 151: 250–262.

    Article  Google Scholar 

  • EN ISO 7730 (2005). Ergonomics of the thermal environment—Analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria. Geneva, Switzerland.

  • Gao N, Niu J (2004). CFD study on micro-environment around human body and personalized ventilation. Building and Environment, 39: 795–805.

    Article  Google Scholar 

  • Halvoňová B, Melikov AK (2010a). Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of disturbances due to walking person(s). Building and Environment, 45: 427–436.

    Article  Google Scholar 

  • Halvoňová B, Melikov AK (2010b). Performance of “ductless” personalized ventilation in conjunction with displacement ventilation: Impact of intake height. Building and Environment, 45: 996–1005.

    Article  Google Scholar 

  • Halvonová B, Melikov AK (2010c). Performance of ductless personalized ventilation in conjunction with displacement ventilation: impact of workstations layout and partitions. HVAC&R Research, 16: 75–94.

    Article  Google Scholar 

  • Heidarinejad M, Dalgo DA, Mattise NW, Srebric J (2018). Personalized cooling as an energy efficiency technology for city energy footprint reduction. Journal of Cleaner Production, 171: 491–505.

    Article  Google Scholar 

  • Kong M, Zhang J, Wang J (2015). Air and air contaminant flows in office cubicles with and without personal ventilation: A CFD modeling and simulation study. Building Simulation, 8: 381–392.

    Article  Google Scholar 

  • Kong X, Deng Y, Li L, Gong W, Cao S (2017). Experimental and numerical study on the thermal performance of ground source heat pump with a set of designed buried pipes. Applied Thermal Engineering, 114: 110–117.

    Article  Google Scholar 

  • Krajčík M, Tomasi R, Simone A, Olesen BW (2013). Experimental study including subjective evaluations of mixing and displacement ventilation combined with radiant floor heating/cooling system. HVAC&R Research, 19: 1063–1072.

    Article  Google Scholar 

  • Krajčík M, Tomasi R, Simone A, Olesen BW (2016). Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation. Science and Technology for the Built Environment, 22: 317–327.

    Article  Google Scholar 

  • Li R, Sekhar SC, Melikov AK (2011). Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems. HVAC&R Research, 17: 829–846.

    Google Scholar 

  • Liu J, Xie X, Qin F, Song S, Lv D (2016). A case study of ground source direct cooling system integrated with water storage tank system. Building Simulation, 9: 659–668.

    Article  Google Scholar 

  • Makhoul A, Ghali K, Ghaddar N (2012). The energy saving potential and the associated thermal comfort of displacement ventilation systems assisted by personalised ventilation. Indoor and Built Environment, 22: 508–519.

    Article  Google Scholar 

  • Makhoul A, Ghali K, Ghaddar N (2013). Thermal comfort and energy performance of a low-mixing ceiling-mounted personalized ventilator system. Building and Environment, 60: 126–136.

    Article  Google Scholar 

  • Mao N, Pan D, Li Z, Xu Y, Song M, Deng S (2017). A numerical study on influences of building envelope heat gain on operating performances of a bed-based task/ambient air conditioning (TAC) system in energy saving and thermal comfort. Applied Energy, 192: 213–221.

    Article  Google Scholar 

  • Melikov AK, Cermak R, Majer M (2002). Personalized ventilation: evaluation of different air terminal devices. Energy and Buildings, 34: 829–836.

    Article  Google Scholar 

  • Melikov AK (2004). Personalized ventilation. Indoor Air, 14: 157–167.

    Article  Google Scholar 

  • Melikov A, Ivanova T, Stefanova G (2012a). Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality. Building and Environment, 47: 100–108.

    Article  Google Scholar 

  • Melikov AK, Skwarczynski MA, Kaczmarczyk J, Zabecky J (2012b). Use of personalized ventilation for improving health, comfort, and performance at high room temperature and humidity. Indoor Air, 23: 250–263.

    Article  Google Scholar 

  • Pérez-Lombard L, Ortiz J, Pout C (2008). A review on buildings energy consumption information. Energy and Buildings, 40: 394–398.

    Article  Google Scholar 

  • Rahmati B, Heidarian A, Jadidi AM (2018). Investigation in performance of a hybrid under-floor air distribution with improved desk displacement ventilation system in a small office. Applied Thermal Engineering, 138: 861–872.

    Article  Google Scholar 

  • Rhee K-N, Kim KW (2015). A 50 year review of basic and applied research in radiant heating and cooling systems for the built environment. Building and Environment, 91: 166–190.

    Article  Google Scholar 

  • Rhee K-N, Olesen BW, Kim KW (2017). Ten questions about radiant heating and cooling systems. Building and Environment, 112: 367–381.

    Article  Google Scholar 

  • Schiavon S, Melikov AK, Sekhar C (2010). Energy analysis of the personalized ventilation system in hot and humid climates. Energy and Buildings, 42: 699–707.

    Article  Google Scholar 

  • Sekhar C, Zheng L (2018). Study of an integrated personalized ventilation and local fan-induced active chilled beam air conditioning system in hot and humid climate. Building Simulation, 11: 787–801.

    Article  Google Scholar 

  • Shahzad S, Calautit JK, Calautit K, Hughes B, Aquino AI (2018). Advanced Personal Comfort System (APCS) for the workplace: A review and case study. Energy and Buildings, 173: 689–709.

    Article  Google Scholar 

  • Shao X, Li X, Ma X, Liang C (2017). Multi-mode ventilation: An efficient ventilation strategy for changeable scenarios and energy saving. Building and Environment, 115: 332–344.

    Article  Google Scholar 

  • Shen C, Gao N, Wang T (2013). CFD study on the transmission of indoor pollutants under personalized ventilation. Building and Environment, 63: 69–78.

    Article  Google Scholar 

  • Shih T-H, Liou WW, Shabbir A, Yang Z, Zhu J (1995). A new k-ε eddy viscosity model for high reynolds number turbulent flows. Computers & Fluids, 24: 227–238.

    Article  MATH  Google Scholar 

  • Sideroff CN, Dang TQ (2008). Verification and validation of CFD for the personal micro-environment. ASHRAE Transactions, 114(2): 45–56.

    Google Scholar 

  • Veselý M, Zeiler W (2014). Personalized conditioning and its impact on thermal comfort and energy performance—A review. Renewable and Sustainable Energy Reviews, 34: 401–408.

    Article  Google Scholar 

  • Yang J, Sekhar C, Cheong D, Raphael B (2014). Performance evaluation of an integrated Personalized Ventilation-Personalized Exhaust system in conjunction with two background ventilation systems. Building and Environment, 78: 103–110.

    Article  Google Scholar 

  • Zhou Y, Deng Y, Wu P, Cao S-J (2017). The effects of ventilation and floor heating systems on the dispersion and deposition of fine particles in an enclosed environment. Building and Environment, 125: 192–205.

    Article  Google Scholar 

  • Zhu S, Dalgo D, Srebric J, Kato S (2017). Cooling efficiency of a spot-type personalized air-conditioner. Building and Environment, 121: 35–48.

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by the National Natural Science Foundation of China (No. 51608310, No. 51806126), and the Innovation Team of the Co-Innovation Center for Green Building of Shandong Province in Shandong Jianzhu University. This study is also supported by the project “Robotic Personal Conditioning Device” sponsored by DOE ARPA-E (DE-AR0000530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiying Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Dalgo, D.A., Zhu, S. et al. Performance analysis of a ductless personalized ventilation combined with radiant floor cooling system and displacement ventilation. Build. Simul. 12, 905–919 (2019). https://doi.org/10.1007/s12273-019-0521-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-019-0521-9

Keywords

Navigation