Skip to main content
Log in

Integration of a magnetocaloric heat pump in a low-energy residential building

  • Research Article
  • Building Systems and Components
  • Published:
Building Simulation Aims and scope Submit manuscript

Abstract

The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aprea C, Greco A, Maiorino A, Masselli C (2016). The energy performances of a rotary permanent magnet magnetic refrigerator. International Journal of Refrigeration, 61: 1–11.

    Article  Google Scholar 

  • Bahl CRH (2015). EnovHeat project summary: Development of efficient novel magnetocaloric heat pumps. Available at http://www.enovheat.dk/Research/ProjectSummary. Accessed 30 Aug 2017.

    Google Scholar 

  • Barclay JA (1982). Use of a ferrofluid as the heat-exchange fluid in a magnetic refrigerator. Journal of Applied Physics, 53: 2887–2894.

    Article  Google Scholar 

  • Basso V, Küpferling M, Curcio C, Bennati C, Barzca A, Katter M, Bratko M, Lovell E, Turcaud J, Cohen L (2015). Specific heat and entropy change at the first order phase transition of La(Fe-Mn-Si)13-H compounds. Journal of Applied Physics, 118(5): 053907.

    Article  Google Scholar 

  • Dall’Olio S, Lei T, Engelbrecht K, Bahl CRH (2017). The effect of tapering on a magnetocaloric regenerator bed. International Journal of Refrigeration, 84: 300–308.

    Article  Google Scholar 

  • Diersch HJG, Bauer D, Heidemann W, Rühaak W, Schätzl P (2011). Finite element modeling of borehole heat exchanger systems—Part 1. Fundamentals. Computers and Geosciences, 37: 1122–1135.

    Article  Google Scholar 

  • Engelbrecht K (2008). A numerical model of an active magnetic regenerator refrigerator with experimental validation. PhD Thesis, University of Wisconsin, Madison, USA.

    Google Scholar 

  • Engelbrecht K, Eriksen D, Bahl CRH, Bjørk R, Geyti J, Lozano JA, Nielsen KK, Saxild F, Smith A, Pryds N (2012). Experimental results for a novel rotary active magnetic regenerator. International Journal of Refrigeration, 35: 1498–1505.

    Article  Google Scholar 

  • Engelbrecht K, Tušek J, Nielsen KK, Kitanovski A, Bahl CRH, Poredoš A (2013). Improved modelling of a parallel plate active magnetic regenerator. Journal of Physics D: Applied Physics, 46(25): 255002.

    Article  Google Scholar 

  • Eriksen D, Engelbrecht K, Bahl CRH, Bjørk R (2016). Exploring the efficiency potential for an active magnetic regenerator. Science and Technology for the Built Environment, 22: 527–533.

    Article  Google Scholar 

  • European Committee for Standardization (2011). EN 1264:2011—Water Based Surface Embedded Heating and Cooling Systems. Brussels: European Committee for Standardization.

  • Georges L, Iwanek T, Thalfeldt M (2017). Energy efficiency of hydronic space-heating distribution systems in super-insulated residential buildings. In: Proceedings of the 15th International IBPSA Building Simulation Conference (BS2017), San Francisco, USA, pp.1852–1861.

    Google Scholar 

  • Grundfos Product Center (2013). GRUNDFOS Data Booklet—CR1-9 A-FGJA-E-HQQE 3x230/400 50Hz - Grundfos Pump 96478872. Available at http://product-selection.grundfos.com/productdetail. product-detail.html?lang=ENU&productnumber=964788 72&productrange=gma&qcid=228594986. Accessed 30 Aug 2017.

  • Insinga AR (2016). Optimising magnetostatic assemblies. PhD Thesis, Technical University of Denmark, Denmark.

    Google Scholar 

  • Insinga AR, Bjørk R, Smith A, Bahl CRH (2016). Optimally segmented permanent magnet structures. IEEE Transactions on Magnetics, 52(12): 7210306.

    Article  Google Scholar 

  • ISO (2012). ISO 11855:2012—Building Environment Design. Design, Dimensioning, Installation and Control of Embedded Radiant Heating and Cooling Systems. Geneva: International Organization for Standardization.

  • Jacobs S, Auringer J, Boeder A, Chell J, Komorowski L, Leonard J, Russek S, Zimm C (2014). The performance of a large-scale rotary magnetic refrigerator. International Journal of Refrigeration, 37: 84–91.

    Article  Google Scholar 

  • Dansk Energi (2011). Den lille blå om Varmepumper. Jensen JB (Dansk Energi), Hvenegaard CM (Teknologisk Institut), Pedersen SV (Teknologisk Institut), Lindholm D (Dansk Energi). (in Danish)

  • Jensen RL, Nørgaard J, Daniels O, Justesen RO (2011). Person-og forbrugsprofiler: bygningsintegreret energiforsyning (DCE Technical Reports; Nr. 69). Aalborg University, Denmark.

    Google Scholar 

  • Johra H, Heiselberg P (2016). Description and validation of a MATLAB-Simulink single family house energy model with furniture and phase change materials (DCE Technical Reports; No. 187). Aalborg University, Denmark.

    Google Scholar 

  • Kalagasidis AS, Rode C, Woloszyn M (2008). HAM-Tools, a whole building simulation tool in Annex 41. In: Proceedings of the IEA ECBCS Annex 41 Closing Seminar, Copenhagen, Denmark, pp. 21–35.

    Google Scholar 

  • Kitanovski A, Tušek J, Tomc U, Plaznik U, Ožbolt M, Poredoš A (2015). Magnetocaloric Energy Conversion: From Theory to Applications. New York: Springer International Publisher.

    Book  Google Scholar 

  • Larsen TS, Brunsgaard C (2010). Komfort Husene: erfaringer, viden og inspiration. Saint-Gobain Isover a/s, Denmark.

    Google Scholar 

  • Le Dréau J (2014). Energy flow and thermal comfort in buildings—Comparison of radiant and air-based heating and cooling system. PhD Thesis, Aalborg University, Denmark.

    Google Scholar 

  • Lei T, Engelbrecht K, Nielsen KK, Veje TC (2017). Study of the geometries of active magnetic regenerators for room temperature magnetocaloric refrigeration. Applied Thermal Engineering, 111: 1232–1243.

    Article  Google Scholar 

  • Lei T, Navickaite K, Engelbrecht K, Barcza A, Vieyra H, Nielsen KK, Bahl CRH (2018). Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration. Applied Thermal Engineering, 128: 10–19.

    Article  Google Scholar 

  • Lozano JA, Capovilla MS, Trevizoli PV, Engelbrecht K, Bahl CRH, Barbosa Jr JR (2016). Development of a novel rotary magnetic refrigerator. International Journal of Refrigeration, 68: 187–197.

    Article  Google Scholar 

  • Mugica I, Roy S, Poncet S, Bouchard J, Nesreddine H (2017). Exergy analysis of a parallel-plate active magnetic regenerator with nanofluids. Entropy, 19(9): 464.

    Article  Google Scholar 

  • Neves Bez H, Bahl CRH, Nielsen KK, Smith A (2016). Magnetocaloric materials and first order phase transitions. PhD Thesis, Technical University of Denmark, Denmark.

    Google Scholar 

  • Nielsen KK, Nellis GF, Klein SA (2013). Numerical modeling of the impact of regenerator housing on the determination of Nusselt numbers. International Journal of Heat and Mass Transfer, 65: 552–560.

    Article  Google Scholar 

  • Okamura T, Hirano N (2013). Improvement of the performance of room temperature magnetic refrigerator using Gd-alloy. Journal of the Japan Society of Applied Electromagnetics and Mechanics, 21: 10–4.

    Article  Google Scholar 

  • Pecharsky VK, Cui J, Johbson DD (2016). (Magneto)caloric refrigeration: Is there light at the end of the tunnel? Philosophical Transactions of the Royal Society A, 374: 20150305.

    Article  Google Scholar 

  • RETScreen International (2005). Ground-Source Heat Pump Project Analysis. Canada, Minister of Natural Resources Canada.

  • Scarpa M, Grau K, Olesen BW (2009). Development and validation of a versatile method for the calculation of heat transfer in waterbased radiant systems. In: Proceedings of the 11th International IBPSA Building Simulation Conference, Glasgow, USA, pp. 27–30.

    Google Scholar 

  • Self SJ, Reddy BV, Rosen MA (2013). Geothermal heat pump systems: Status review and comparison with other heating options. Applied Energy, 101: 341–348.

    Article  Google Scholar 

  • Smith A, Bahl CRH, Bjørk R, Engelbrecht K, Nielsen KK, Pryds N (2012). Materials challenges for high performance magnetocaloric refrigeration devices. Advanced Energy Materials, 2: 1288–1318.

    Article  Google Scholar 

  • The Danish Ministry of Economic (2010). Building Regulations. Business Affairs Enterprise, and Construction Authority. Available at http://bygningsreglementet.dk/file/155699/BR10_ENGLISH.pdf. Accessed 30 Aug 2017.

  • Trevizoli PV, Nakashima AT, Peixer GF, Barbosa Jr JR (2017). Performance assessment of different porous matrix geometries for active magnetic regenerators. Applied Energy, 187: 847–861.

    Article  Google Scholar 

  • TRNSYS (2012).TRNSYS 17—Mathematical Reference. Type 31: Pipe Or Duct, University of Wisconsin-Madison Solar Energy Laboratory, TRANSSOLAR Energietechnik GmbH, CSTB, TESS, pp.186–188.

  • Uponor (2008). Heating and Cooling Solutions—Technical Guidelines. Uponor GmbH, Germany.

  • Uponor (2012). Ground Energy Technical Information. Uponor GmbH, Germany. Verlag des Vereins Deutscher Ingenieure (2001}). VDI 4640:2001, Thermal use of the underground—Ground source heat pump systems. Verlag des Vereins Deutscher Ingenieure, Germany

  • Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner Jr K, Osborne M, Anderson I (1998). Description and performance of a near-room temperature magnetic refrigerator. In: Kittel P (ed), Advances in Cryogenic Engineering, Vol 43. Boston, MA, USA: Springer, pp. 1759–1766.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financed by the ENOVHEAT project, which is funded by Innovation Fund Denmark (contract no 12-132673).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hicham Johra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johra, H., Filonenko, K., Heiselberg, P. et al. Integration of a magnetocaloric heat pump in a low-energy residential building. Build. Simul. 11, 753–763 (2018). https://doi.org/10.1007/s12273-018-0428-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12273-018-0428-x

Keywords

Navigation