Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes

Abstract

Human cytochrome P450 enzymes (CYPs) play a critical role in various biological processes and human diseases. CYP1 family members, including CYP1A1, CYP1A2, and CYP1B1, are induced by aryl hydrocarbon receptors (AhRs). The binding of ligands such as polycyclic aromatic hydrocarbons activates the AhRs, which are involved in the metabolism (including oxidation) of various endogenous or exogenous substrates. The ligands that induce CYP1 expression are reported to be carcinogenic xenobiotics. Hence, CYP1 enzymes are correlated with the pathogenesis of cancers. Various endogenous substrates are involved in the metabolism of steroid hormones, eicosanoids, and other biological molecules that mediate the pathogenesis of several human diseases. Additionally, CYP1s metabolize and activate/inactivate therapeutic drugs, especially, anti-cancer agents. As the metabolism of drugs determines their therapeutic efficacy, CYP1s can determine the susceptibility of patients to some drugs. Thus, understanding the role of CYP1s in diseases and establishing novel and efficient therapeutic strategies based on CYP1s have piqued the interest of the scientific community.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Achary MS, Reddy AB, Chakrabarti S, Panicker SG, Mandal AK, Ahmed N, Balasubramanian D, Hasnain SE, Nagarajaram HA (2006) Disease-causing mutations in proteins: structural analysis of the CYP1B1 mutations causing primary congenital glaucoma in humans. Biophys J 91:4329–4339. https://doi.org/10.1529/biophysj.106.085498

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Afzal R, Firasat S, Kaul H, Ahmed B, Siddiqui SN, Zafar SN, Shahzadi M, Afshan K (2019) Mutational analysis of the CYP1B1 gene in Pakistani primary congenital glaucoma patients: identification of four known and a novel causative variant at the 3’ splice acceptor site of intron 2. Congenit Anom (Kyoto) 59:152–161. https://doi.org/10.1111/cga.12312

    CAS  Article  Google Scholar 

  3. Aldrich MC, Selvin S, Hansen HM, Barcellos LF, Wrensch MR, Sison JD, Kelsey KT, Buffler PA, Quesenberry CP Jr., Seldin MF, Wiencke JK (2009) CYP1A1/2 haplotypes and lung cancer and assessment of confounding by population stratification. Cancer Res 69:2340–2348. https://doi.org/10.1158/0008-5472.CAN-08-2576

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Alsubait A, Aldossary W, Rashid M, Algamdi A, Alrfaei BM (2020) CYP1B1 gene: implications in glaucoma and cancer. J Cancer 11:4652–4661. https://doi.org/10.7150/jca.42669

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte IM, kConFab Investigators, Vink JM, Rawal R, Mangino M, Teumer A, Keers JC, Verwoert G, Baumeister S, Biffar R, Petersmann A, Dahmen N, Doering A, Isaacs A, Broer L, Wray NR, Montgomery GW, Levy D, Psaty BM, Gudnason V, Chakravarti A, Sulem P, Gudbjartsson DF, Kiemeney LA, Thorsteinsdottir U, Stefansson K, van Rooij FJA, Aulchenko YS, Hottenga JJ, Rivadeneira FR, Hofman A, Uitterlinden AG, Hammond CJ, Shin SY, Ikram A, Witteman JCM, Janssens ACJW, Snieder H, Tiemeier H, Wolfenbuttel BHR, Oostra BA, Heath AC, Wichmann E, Spector TD, Grabe HJ, Boomsma DI, Martin NG, van Duijn CM (2012) Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 17:1116–1129. https://doi.org/10.1038/mp.2011.101

    CAS  Article  PubMed  Google Scholar 

  6. Anderson G, Mazzoccoli G (2019) Left ventricular hypertrophy: roles of mitochondria CYP1B1 and melatonergic pathways in co-ordinating wider pathophysiology. Int J Mol Sci 20:4068. https://doi.org/10.3390/ijms20164068

    CAS  Article  PubMed Central  Google Scholar 

  7. Androutsopoulos VP, Tsatsakis AM, Spandidos DA (2009) Cytochrome P450 CYP1A1: wider roles in cancer progression and prevention. BMC Cancer 9:187. https://doi.org/10.1186/1471-2407-9-187

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Anstee QM, Targher G, Day CP (2013) Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat Rev Gastroenterol Hepatol 10:330–344. https://doi.org/10.1038/nrgastro.2013.41

    CAS  Article  PubMed  Google Scholar 

  9. Aoyama T, Korzekwa K, Nagata K, Gillette J, Gelboin HV, Gonzalez FJ (1990) Estradiol metabolism by complementary deoxyribonucleic acid-expressed human cytochrome P450s. Endocrinology 126:3101–3106. https://doi.org/10.1210/endo-126-6-3101

    CAS  Article  PubMed  Google Scholar 

  10. Asakawa M, Fukutani Y, Savangsuksa A, Noguchi K, Matsunami H, Yohda M (2017) Modification of the response of olfactory receptors to acetophenone by CYP1a2. Sci Rep 7:10167. https://doi.org/10.1038/s41598-017-10862-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Backman JT, Schroder MT, Neuvonen PJ (2008) Effects of gender and moderate smoking on the pharmacokinetics and effects of the CYP1A2 substrate tizanidine. Eur J Clin Pharmacol 64:17–24. https://doi.org/10.1007/s00228-007-0389-y

    CAS  Article  PubMed  Google Scholar 

  12. Badawi AF, Cavalieri EL, Rogan EG (2001) Role of human cytochrome P450 1A1, 1A2, 1B1, and 3A4 in the 2-, 4-, and 16alpha-hydroxylation of 17beta-estradiol. Metabolism 50:1001–1003. https://doi.org/10.1053/meta.2001.25592

    CAS  Article  PubMed  Google Scholar 

  13. Baek HS, Kwon YJ, Ye DJ, Cho E, Kwon TU, Chun YJ (2019) CYP1B1 prevents proteasome-mediated XIAP degradation by inducing PKCepsilon activation and phosphorylation of XIAP. Biochim Biophys Acta Mol Cell Res 1866:118553. https://doi.org/10.1016/j.bbamcr.2019.118553

    CAS  Article  PubMed  Google Scholar 

  14. Bandiera S, Weidlich S, Harth V, Broede P, Ko Y, Friedberg T (2005) Proteasomal degradation of human CYP1B1: effect of the Asn453Ser polymorphism on the post-translational regulation of CYP1B1 expression. Mol Pharmacol 67:435–443. https://doi.org/10.1124/mol.104.006056

    CAS  Article  PubMed  Google Scholar 

  15. Barnes PJ (2013) Theophylline. Am J Respir Crit Care Med 188:901–906. https://doi.org/10.1164/rccm.201302-0388PP

    CAS  Article  PubMed  Google Scholar 

  16. Bayoumy N, El-Shabrawi M, Younes S, Atwa K (2020) CYP1A1 gene (6235T<C) polymorphism as a risk factor for polycystic ovarian syndrome among Egyptian women. Hum Fertil (Camb) 23:142–147. https://doi.org/10.1080/14647273.2018.1522455

    CAS  Article  Google Scholar 

  17. Belous AR, Hachey DL, Dawling S, Roodi N, Parl FF (2007) Cytochrome P450 1B1-mediated estrogen metabolism results in estrogen-deoxyribonucleoside adduct formation. Cancer Res 67:812–817. https://doi.org/10.1158/0008-5472.CAN-06-2133

    CAS  Article  PubMed  Google Scholar 

  18. Bradshaw TD, Westwell AD (2004) The development of the antitumour benzothiazole prodrug, Phortress, as a clinical candidate. Curr Med Chem 11:1009–1021. https://doi.org/10.2174/0929867043455530

    CAS  Article  PubMed  Google Scholar 

  19. Burgess KS, Philips S, Benson EA, Desta Z, Gaedigk A, Gaedigk R, Segar MW, Liu Y, Skaar TC (2015) Age-related changes in microRNA expression and pharmacogenes in human liver. Clin Pharmacol Ther 98:205–215. https://doi.org/10.1002/cpt.145

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406

    CAS  Article  PubMed  Google Scholar 

  21. Cao D, Ren Z, Lu D, Liu L, Xu P, Zhang Q, Wei Q (2019) Association between CYP1A1 rs4646903 T > C genetic variations and male infertility risk: a meta-analysis. Medicine (Baltimore) 98:e16543. https://doi.org/10.1097/MD.0000000000016543

    CAS  Article  Google Scholar 

  22. Capdevila JH, Harris RC, Falck JR (2002) Microsomal cytochrome P450 and eicosanoid metabolism. Cell Mol Life Sci 59:780–789. https://doi.org/10.1007/s00018-002-8466-y

    CAS  Article  PubMed  Google Scholar 

  23. Chakrabarti S, Devi KR, Komatireddy S, Kaur K, Parikh RS, Mandal AK, Chandrasekhar G, Thomas R (2007) Glaucoma-associated CYP1B1 mutations share similar haplotype backgrounds in POAG and PACG phenotypes. Invest Ophthalmol Vis Sci 48:5439–5444. https://doi.org/10.1167/iovs.07-0629

    Article  PubMed  Google Scholar 

  24. Chang BL, Zheng SL, Isaacs SD, Turner A, Hawkins GA, Wiley KE, Bleecker ER, Walsh PC, Meyers DA, Isaacs WB, Xu J (2003) Polymorphisms in the CYP1B1 gene are associated with increased risk of prostate cancer. Br J Cancer 89:1524–1529. https://doi.org/10.1038/sj.bjc.6601288

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Chang WC, Jia H, Aw W, Saito K, Hasegawa S, Kato H (2014) Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats. Br J Nutr 112:709–717. https://doi.org/10.1017/S0007114514001421

    CAS  Article  PubMed  Google Scholar 

  26. Chavarria-Soley G, Sticht H, Aklillu E, Ingelman-Sundberg M, Pasutto F, Reis A, Rautenstrauss B (2008) Mutations in CYP1B1 cause primary congenital glaucoma by reduction of either activity or abundance of the enzyme. Hum Mutat 29:1147–1153. https://doi.org/10.1002/humu.20786

    CAS  Article  PubMed  Google Scholar 

  27. Chen Y, Zeng L, Wang Y, Tolleson WH, Knox B, Chen S, Ren Z, Guo L, Mei N, Qian F, Huang K, Liu D, Tong W, Yu D, Ning B (2017) The expression, induction and pharmacological activity of CYP1A2 are post-transcriptionally regulated by microRNA hsa-miR-132-5p. Biochem Pharmacol 145:178–191. https://doi.org/10.1016/j.bcp.2017.08.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Choi YM, An S, Lee EM, Kim K, Choi SJ, Kim JS, Jang HH, An IS, Bae S (2012) CYP1A1 is a target of miR-892a-mediated post-transcriptional repression. Int J Oncol 41:331–336. https://doi.org/10.3892/ijo.2012.1418

    CAS  Article  PubMed  Google Scholar 

  29. Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2004) Metabolism of retinoids and arachidonic acid by human and mouse cytochrome P450 1b1. Drug Metab Dispos 32:840–847. https://doi.org/10.1124/dmd.32.8.840

    CAS  Article  PubMed  Google Scholar 

  30. Chouiter L, Nadifi S (2017) Analysis of CYP1B1 gene mutations in patients with primary congenital glaucoma. J Pediatr Genet 6:205–214. https://doi.org/10.1055/s-0037-1602695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Chun YJ, Kim S (2003) Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Med Res Rev 23:657–668. https://doi.org/10.1002/med.10050

    CAS  Article  PubMed  Google Scholar 

  32. Chun YJ, Oh YK, Kim BJ, Kim D, Kim SS, Choi HK, Kim MY (2009) Potent inhibition of human cytochrome P450 1B1 by tetramethoxystilbene. Toxicol Lett 189:84–89. https://doi.org/10.1016/j.toxlet.2009.05.005

    CAS  Article  PubMed  Google Scholar 

  33. Cobbina E, Akhlaghi F (2017) Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev 49:197–211. https://doi.org/10.1080/03602532.2017.1293683

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Coelho REA, Sena DR, Santa Cruz F, Moura B, Han CC, Andrade FN, Lira RPC (2019) CYP1B1 gene and phenotypic correlation in patients from Northeastern Brazil with primary congenital glaucoma. J Glaucoma 28:161–164. https://doi.org/10.1097/IJG.0000000000001132

    Article  PubMed  Google Scholar 

  35. Coleman T, Ellis SW, Martin IJ, Lennard MS, Tucker GT (1996) 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is N-demethylated by cytochromes P450 2D6, 1A2 and 3A4–implications for susceptibility to Parkinson’s disease. J Pharmacol Exp Ther 277:685–690

    CAS  PubMed  Google Scholar 

  36. Cornelis MC, El-Sohemy A, Campos H (2004) Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction. J Med Genet 41:758–762. https://doi.org/10.1136/jmg.2004.022012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Cornelis MC, El-Sohemy A, Kabagambe EK, Campos H (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295:1135–1141. https://doi.org/10.1001/jama.295.10.1135

    CAS  Article  PubMed  Google Scholar 

  38. Corral PA, Botello JF, Xing C (2020) Design, synthesis, and enzymatic characterization of quinazoline-based CYP1A2 inhibitors. Bioorg Med Chem Lett 30:126719. https://doi.org/10.1016/j.bmcl.2019.126719

    CAS  Article  PubMed  Google Scholar 

  39. Crawford JH, Yang S, Zhou M, Simms HH, Wang P (2004) Down-regulation of hepatic CYP1A2 plays an important role in inflammatory responses in sepsis. Crit Care Med 32:502–508. https://doi.org/10.1097/01.CCM.0000109453.57709.E2

    CAS  Article  PubMed  Google Scholar 

  40. Cui J, Meng Q, Zhang X, Cui Q, Zhou W, Li S (2015) Design and synthesis of new alpha-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J Med Chem 58:3534–3547. https://doi.org/10.1021/acs.jmedchem.5b00265

    CAS  Article  PubMed  Google Scholar 

  41. Dai ZR, Feng L, Jin Q, Cheng H, Li Y, Ning J, Yu Y, Ge GB, Cui JN, Yang L (2017) A practical strategy to design and develop an isoform-specific fluorescent probe for a target enzyme: CYP1A1 as a case study. Chem Sci 8:2795–2803. https://doi.org/10.1039/c6sc03970g

    CAS  Article  PubMed  Google Scholar 

  42. Dawling S, Hachey DL, Roodi N, Parl FF (2004) In vitro model of mammary estrogen metabolism: structural and kinetic differences between catechol estrogens 2- and 4-hydroxyestradiol. Chem Res Toxicol 17:1258–1264. https://doi.org/10.1021/tx0498657

    CAS  Article  PubMed  Google Scholar 

  43. Denisov IG, Makris TM, Sligar SG, Schlichting I (2005) Structure and chemistry of cytochrome P450. Chem Rev 105:2253–2277. https://doi.org/10.1021/cr0307143

    CAS  Article  PubMed  Google Scholar 

  44. Ding B, Sun W, Han S, Cai Y, Ren M, Shen Y (2018) Cytochrome P450 1A1 gene polymorphisms and cervical cancer risk: a systematic review and meta-analysis. Medicine (Baltimore) 97:e0210. https://doi.org/10.1097/MD.0000000000010210

    CAS  Article  Google Scholar 

  45. Djordjevic N, Ghotbi R, Bertilsson L, Jankovic S, Aklillu E (2008) Induction of CYP1A2 by heavy coffee consumption in Serbs and Swedes. Eur J Clin Pharmacol 64:381–385. https://doi.org/10.1007/s00228-007-0438-6

    CAS  Article  PubMed  Google Scholar 

  46. Djordjevic N, Ghotbi R, Jankovic S, Aklillu E (2010) Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 -163C>A polymorphism. Eur J Clin Pharmacol 66:697–703. https://doi.org/10.1007/s00228-010-0823-4

    CAS  Article  PubMed  Google Scholar 

  47. Do T, Shei W, Chau PT, Trang DL, Yong VH, Ng XY, Chen YM, Aung T, Vithana EN (2016) CYP1B1 and MYOC mutations in vietnamese primary congenital glaucoma patients. J Glaucoma 25:e491-498. https://doi.org/10.1097/IJG.0000000000000331

    Article  PubMed  Google Scholar 

  48. Doshi M, Marcus C, Bejjani BA, Edward DP (2006) Immunolocalization of CYP1B1 in normal, human, fetal and adult eyes. Exp Eye Res 82:24–32. https://doi.org/10.1016/j.exer.2005.04.016

    CAS  Article  PubMed  Google Scholar 

  49. Doyle SE, Grace MS, McIvor W, Menaker M (2002) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Vis Neurosci 19:593–601. https://doi.org/10.1017/s0952523802195058

    Article  PubMed  Google Scholar 

  50. Duan YB, Zhu JB, Ynag JX, Liu GQ, Bai X, Qu N, Wnag XJ, Li XY (2020) Regulation of high-altitude hypoxia on the transcription of CYP450 and UGT1A1 mediated by PXR and CAR. Front Pharmacol 11:574176. https://doi.org/10.3389/fphar.2020.574176

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Dubocovich ML (1983) Melatonin is a potent modulator of dopamine release in the retina. Nature 306:782–784. https://doi.org/10.1038/306782a0

    CAS  Article  PubMed  Google Scholar 

  52. Durairaj P, Fan L, Du W, Ahmad S, Mebrahtu D, Sharma S, Ashraf RA, Liu J, Liu Q, Bureik M (2019) Functional expression and activity screening of all human cytochrome P450 enzymes in fission yeast. FEBS Lett 593:1372–1380. https://doi.org/10.1002/1873-3468.13441

    CAS  Article  PubMed  Google Scholar 

  53. Dutour R, Poirier D (2017) Inhibitors of cytochrome P450 (CYP) 1B1. Eur J Med Chem 135:296–306. https://doi.org/10.1016/j.ejmech.2017.04.042

    CAS  Article  PubMed  Google Scholar 

  54. D’Uva G, Baci D, Albini A, Noonan DM (2018) Cancer chemoprevention revisited: cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Rev 63:1–18. https://doi.org/10.1016/j.ctrv.2017.10.013

    CAS  Article  PubMed  Google Scholar 

  55. Elfaki I, Mir R, Almutairi FM, Duhier FMA (2018) Cytochrome P450: polymorphisms and roles in cancer, diabetes and atherosclerosis. Asian Pac J Cancer Prev 19:2057–2070. https://doi.org/10.22034/APJCP.2018.19.8.2057

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Ezzeldin N, El-Lebedy D, Darwish A, El-Bastawisy A, Hassan M, Abd El-Aziz S, Abdel-Hamid M, Saad-Hussein A (2017) Genetic polymorphisms of human cytochrome P450 CYP1A1 in an Egyptian population and tobacco-induced lung cancer. Genes Environ 39:7. https://doi.org/10.1186/s41021-016-0066-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Faber MS, Jetter A, Fuhr U (2005) Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 97:125–134. https://doi.org/10.1111/j.1742-7843.2005.pto_973160.x

    CAS  Article  PubMed  Google Scholar 

  58. Faiq MA, Ali M, Dada T, Dada R, Saluja D (2014) A novel methodology for enhanced and consistent heterologous expression of unmodified human cytochrome P450 1B1 (CYP1B1). PLoS ONE 9:e110473. https://doi.org/10.1371/journal.pone.0110473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Falbova D, Vorobelova L, Cernanova VC, Benus R, Wsolova L, Sivakova D (2020) Association of cytochrome P450 1B1 gene polymorphisms and environmental biomarkers with hypertension in Slovak midlife women. Menopause. https://doi.org/10.1097/GME.0000000000001605

    Article  PubMed  Google Scholar 

  60. Falero-Perez J, Song YS, Sorenson CM, Sheibani N (2018) CYP1B1: a key regulator of redox homeostasis. Trends Cell Mol Biol 13:27–45

    PubMed  PubMed Central  Google Scholar 

  61. Falero-Perez J, Sorenson CM, Sheibani N (2020) Retinal astrocytes transcriptome reveals Cyp1b1 regulates the expression of genes involved in cell adhesion and migration. PLoS ONE 15:e0231752. https://doi.org/10.1371/journal.pone.0231752

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Fan BJ, Wang DY, Lam DS, Pang CP (2006) Gene mapping for primary open angle glaucoma. Clin Biochem 39:249–258. https://doi.org/10.1016/j.clinbiochem.2005.11.001

    CAS  Article  PubMed  Google Scholar 

  63. Fan W, Huang Z, Xiao Z, Li S, Ma Q (2016) The cytochrome P4501A1 gene polymorphisms and endometriosis: a meta-analysis. J Assist Reprod Genet 33:1373–1383. https://doi.org/10.1007/s10815-016-0783-4

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fang X, Zhao W, Xu J, Tu F, Wang X, Li B, Fu Y, Ren S (2016) CYP1A1 mediates the suppression of major inflammatory cytokines in pulmonary alveolar macrophage (PAM) cell lines caused by Mycoplasma hyponeumoniae. Dev Comp Immunol 65:132–138. https://doi.org/10.1016/j.dci.2016.06.023

    CAS  Article  PubMed  Google Scholar 

  65. Fisher CD, Lickteig AJ, Augustine LM, Ranger-Moore J, Jackson JP, Ferguson SS, Cherrington NJ (2009) Hepatic cytochrome P450 enzyme alterations in humans with progressive stages of nonalcoholic fatty liver disease. Drug Metab Dispos 37:2087–2094. https://doi.org/10.1124/dmd.109.027466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Fleming I, Fisslthaler B, Busse R (1995) Calcium signaling in endothelial cells involves activation of tyrosine kinases and leads to activation of mitogen-activated protein kinases. Circ Res 76:522–529. https://doi.org/10.1161/01.res.76.4.522

    CAS  Article  PubMed  Google Scholar 

  67. Fontana RJ, deVries TM, Woolf TF, Knapp MJ, Brown AS, Kaminsky LS, Tang BK, Foster NL, Brown RR, Watkins PB (1998) Caffeine based measures of CYP1A2 activity correlate with oral clearance of tacrine in patients with Alzheimer’s disease. Br J Clin Pharmacol 46:221–228. https://doi.org/10.1046/j.1365-2125.1998.00776.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Forsyth JT, Grunewald RA, Rostami-Hodjegan A, Lennard MS, Sagar HJ, Tucker GT (2000) Parkinson’s disease and CYP1A2 activity. Br J Clin Pharmacol 50:303–309. https://doi.org/10.1046/j.1365-2125.2000.00259.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Fortin S, Charest-Morin X, Turcotte V, Lauvaux C, Lacroix J, Cote MF, GobeilC-Gaudreault SR (2017) Activation of phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates prodrugs by CYP1A1 as new antimitotics targeting breast cancer cells. J Med Chem 60:4963–4982. https://doi.org/10.1021/acs.jmedchem.7b00343

    CAS  Article  PubMed  Google Scholar 

  70. Fredholm BB (1995) Astra Award Lecture. Adenosine, adenosine receptors and the actions of caffeine. Pharmacol Toxicol 76:93–101. https://doi.org/10.1111/j.1600-0773.1995.tb00111.x

    CAS  Article  PubMed  Google Scholar 

  71. Fuhr U, Kober S, Zaigler M, Mutschler E, Spahn-Langguth H (2005) Rate-limiting biotransformation of triamterene is mediated by CYP1A2. Int J Clin Pharmacol Ther 43:327–334. https://doi.org/10.5414/cpp43327

    CAS  Article  PubMed  Google Scholar 

  72. Gajjar K, Martin-Hirsch PL, Martin FL (2012) CYP1B1 and hormone-induced cancer. Cancer Lett 324:13–30. https://doi.org/10.1016/j.canlet.2012.04.021

    CAS  Article  PubMed  Google Scholar 

  73. Gassmann K, Abel J, Bothe H, Haarmann-Stemmann T, Merk HF, Quasthoff KN, Rockel TD, Schreiber T, Fritsche E (2010) Species-specific differential AhR expression protects human neural progenitor cells against developmental neurotoxicity of PAHs. Environ Health Perspect 118:1571–1577. https://doi.org/10.1289/ehp.0901545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Gastelum G, Jiang W, Wang L, Zhou G, Borkar R, Putluri N, Moorthy B (2020) Polycyclic aromatic hydrocarbon-induced pulmonary carcinogenesis in cytochrome P450 (CYP)1A1- and 1A2-null mice: roles of CYP1A1 and CYP1A2. Toxicol Sci 177:347–361. https://doi.org/10.1093/toxsci/kfaa107

    Article  PubMed  Google Scholar 

  75. Ghotbi R, Gomez A, Milani L, Tybring G, Syvänen AC, Bertilsson L, Ingelman-Sunberg M, Aklillu E (2009) Allele-specific expression and gene methylation in the control of CYP1A2 mRNA level in human livers. Pharmacogenomics J 9:208–217. https://doi.org/10.1038/tpj.2009.4

    CAS  Article  PubMed  Google Scholar 

  76. Gill P, Bhattacharyya S, McCullough S, Letzig L, Mishra PJ, Luo C, Dweep H, James L (2017) MicroRNA regulation of CYP 1A2, CYP3A4 and CYP2E1 expression in acetaminophen toxicity. Sci Rep 7:12331. https://doi.org/10.1038/s41598-017-11811-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Gong B, Qu C, Li X, Shi Y, Lin Y, Zhou Y, Shuai P, Yang Y, Liu X, Zhang D, Yang Z (2015) Mutation spectrum of CYP1B1 in Chinese patients with primary open-angle glaucoma. Br J Ophthalmol 99:425–430. https://doi.org/10.1136/bjophthalmol-2014-306054

    Article  PubMed  Google Scholar 

  78. Gotoh O (1992) Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83–90. https://doi.org/10.1016/S0021-9258(18)48462-1

    CAS  Article  PubMed  Google Scholar 

  79. Gould DB, John SW (2002) Anterior segment dysgenesis and the developmental glaucomas are complex traits. Hum Mol Genet 11:1185–1193. https://doi.org/10.1093/hmg/11.10.1185

    CAS  Article  PubMed  Google Scholar 

  80. Granfors MT, Backman JT, Neuvonen M, Ahonen J, Neuvonen PJ (2004) Fluvoxamine drastically increases concentrations and effects of tizanidine: a potentially hazardous interaction. Clin Pharmacol Ther 75:331–341. https://doi.org/10.1016/j.clpt.2003.12.005

    CAS  Article  PubMed  Google Scholar 

  81. Gu CY, Li GX, Zhu Y, Xu H, Qin XJ, Bo D, Ye DW (2018) A single nucleotide polymorphism in CYP1B1 leads to differential prostate cancer risk and telomere length. J Cancer 9:269–274. https://doi.org/10.7150/jca.21774

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Guengerich FP (2003) Cytochromes P450, drugs, and diseases. Mol Interv 3:194–204. https://doi.org/10.1124/mi.3.4.194

    CAS  Article  PubMed  Google Scholar 

  83. Guengerich FP (2005) Human cytochrome P450 enzymes. In: Ortiz de Montellano PR (ed) Cytochrome P450. Springer, Boston. https://doi.org/10.1007/0-387-27447-2_10

    Google Scholar 

  84. Guengerich FP (2018) Mechanisms of cytochrome P450-catalyzed oxidations. ACS Catal 8:10964–10976. https://doi.org/10.1021/acscatal.8b03401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Guest N, Corey P, Vescovi J, El-Sohemy A (2018) Caffeine, CYP1A2 genotype, and endurance performance in athletes. Med Sci Sports Exerc 50:1570–1578. https://doi.org/10.1249/MSS.0000000000001596

    CAS  Article  PubMed  Google Scholar 

  86. Gunes A, Dahl ML (2008) Variation in CYP1A2 activity and its clinical implications: influence of environmental factors and genetic polymorphisms. Pharmacogenomics 9:625–637. https://doi.org/10.2217/14622416.9.5.625

    CAS  Article  PubMed  Google Scholar 

  87. Hayes CL, Spink DC, Spink BC, Cao JQ, Walker NJ, Sutter TR (1996) 17 beta-estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc Natl Acad Sci U S A 93:9776–9781. https://doi.org/10.1073/pnas.93.18.9776

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. He X, Feng S (2015) Role of metabolic enzymes P450 (CYP) on activating procarcinogen and their polymorphisms on the risk of cancers. Curr Drug Metab 16:850–863. https://doi.org/10.2174/138920021610151210164501

    CAS  Article  PubMed  Google Scholar 

  89. Hoidy WH, Jaber FA, Al-Askari MA (2019) Association of CYP1A1 rs1048943 polymorphism with prostate cancer in Iraqi men patients. Asian Pac J Cancer Prev 20:3839–3842. https://doi.org/10.31557/APJCP.2019.20.12.3839

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Hong CC, Tang BK, Rao V, Agarwal S, Martin L, Tritchler D, Yaffe M, Boyd NF (2004) Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study. Breast Cancer Res 6:R338-351. https://doi.org/10.1186/bcr797

    Article  PubMed  PubMed Central  Google Scholar 

  91. Horley NJ, Beresford KJ, Chawla T, McCann GJ, Ruparelia KC, Gatchie L, Sonawane VR, Williams IS, Tan HL, Joshi P, Bharate SS, Kumar V, Bharate SB, Chaudhuri B (2017) Discovery and characterization of novel CYP1B1 inhibitors based on heterocyclic chalcones: overcoming cisplatin resistance in CYP1B1-overexpressing lines. Eur J Med Chem 129:159–174. https://doi.org/10.1016/j.ejmech.2017.02.016

    CAS  Article  PubMed  Google Scholar 

  92. Hukkanen J, Pelkonen O, Hakkola J, Raunio H (2002) Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 32:391–411. https://doi.org/10.1080/20024091064273

    CAS  Article  PubMed  Google Scholar 

  93. Hussain T, Al-Attas OS, Al-Daghri NM, Mohammed AA, De Rosas E, Ibrahim S, Vinodson B, Ansari MG, El-Din KI (2014) Induction of CYP1A1, CYP1A2, CYP1B1, increased oxidative stress and inflammation in the lung and liver tissues of rats exposed to incense smoke. Mol Cell Biochem 391:127–136. https://doi.org/10.1007/s11010-014-1995-5

    CAS  Article  PubMed  Google Scholar 

  94. IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42. IARC Monogr Eval Carcinog Risks Hum Suppl 7:1–440

    Google Scholar 

  95. Ibrahim M, MacFarlane EM, Matteo G, Hoyeck MP, Rick KRC, Farokhi S, Copley CM, O’Dwyer S, Bruin JE (2020) Functional cytochrome P450 1A enzymes are induced in mouse and human islets following pollutant exposure. Diabetologia 63:162–178. https://doi.org/10.1007/s00125-019-05035-0

    CAS  Article  PubMed  Google Scholar 

  96. Jennings BL, Estes AM, Anderson LJ, Fang XR, Yaghini FA, Fan Z, Gonzalez FJ, Campbell WB, Malik KU (2012) Cytochrome P450 1B1 gene disruption minimizes deoxycorticosterone acetate-salt-induced hypertension and associated cardiac dysfunction and renal damage in mice. Hypertension 60:1510–1516. https://doi.org/10.1161/HYPERTENSIONAHA.112.202606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Jin B, Ryu DY (2004) Regulation of CYP1A2 by histone deacetylase inhibitors in mouse hepatocytes. J Biochem Mol Toxicol 18:131–132. https://doi.org/10.1002/jbt.20017

    CAS  Article  PubMed  Google Scholar 

  98. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15:234–248. https://doi.org/10.1038/nrclinonc.2018.8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Ju W, Yang S, Ansede JH, Stephens CE, Bridges AS, Voyksner RD, Ismail MA, Boykin DW, Tidwell RR, Hall JE, Wang MZ (2014) CYP1A1 and CYP1B1-mediated biotransformation of the antitrypanosomal methamidoxime prodrug DB844 forms novel metabolites through intramolecular rearrangement. J Pharm Sci 103:337–349. https://doi.org/10.1002/jps.23765

    CAS  Article  PubMed  Google Scholar 

  100. Julsing MK, Cornelissen S, Buhler B, Schmid A (2008) Heme-iron oxygenases: powerful industrial biocatalysts? Curr Opin Chem Biol 12:177–186. https://doi.org/10.1016/j.cbpa.2008.01.029

    CAS  Article  PubMed  Google Scholar 

  101. Karimian M, Behjati M, Barati E, Ehteram T, Karimian A (2020) CYP1A1 and GSTs common gene variations and presbycusis risk: a genetic association analysis and a bioinformatics approach. Environ Sci Pollut Res Int 27:42600–42610. https://doi.org/10.1007/s11356-020-10144-0

    CAS  Article  PubMed  Google Scholar 

  102. Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S (1993) The CYP1A1 gene and cancer susceptibility. Crit Rev Oncol Hematol 14:77–87. https://doi.org/10.1016/1040-8428(93)90007-q

    CAS  Article  PubMed  Google Scholar 

  103. Khafagy MM, El-Guendy N, Tantawy MA, Eldaly MA, Elhilali HM, Abdel Wahab AHA (2019) Novel CYP1B1 mutations and a possible prognostic use for surgical management of congenital glaucoma. Int J Ophthalmol 12:607–614. https://doi.org/10.18240/ijo.2019.04.14

    Article  PubMed  PubMed Central  Google Scholar 

  104. Khosroshahi MZ, Alvarez ACC, Gagné-Boulet M, C-Gaudreault R, Gobeil S, Fortin S (2020) Evaluation of the time-dependent antiproliferative activity and liver microsome stability of 3 phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates as promising CYP1A1-dependent antimicrotubule prodrugs. J Pharm Pharmacol 72:249–258. https://doi.org/10.1111/jphp.13198

    CAS  Article  Google Scholar 

  105. Klein K, Winter S, Turpeinen M, Schwab M, Zanger UM (2010) Pathway-targeted pharmacogenomics of CYP1A2 in human liver. Front Pharmacol 1:129. https://doi.org/10.3389/fphar.2010.00129

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Kleiner DE, Makhlouf HR (2016) Histology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in adults and children. Clin Liver Dis 20:293–312. https://doi.org/10.1016/j.cld.2015.10.011

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ko Y, Abel J, Harth V, Brode P, Antony C, Donat S, Fischer HP, Ortiz-Pallardo ME, Their R, Sachinidis A, Vetter H, Bolt HM, Herberhold C, Bruning T (2001) Association of CYP1B1 codon 432 mutant allele in head and neck squamous cell cancer is reflected by somatic mutations of p53 in tumor tissue. Cancer Res 61:4398–4404

    CAS  PubMed  Google Scholar 

  108. Koonrungsesomboon N, Khatsri R, Wongchompoo P, Teekachunhatean S (2018) The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review and meta-analysis. Pharmacogenomics J 18:760–768. https://doi.org/10.1038/s41397-017-0011-3

    CAS  Article  PubMed  Google Scholar 

  109. Kuffel MJ, Schroeder JC, Pobst LJ, Naylor S, Reid JM, Kaufmann SH, Ames MM (2002) Activation of the antitumor agent aminoflavone (NSC 686288) is mediated by induction of tumor cell cytochrome P450 1A1/1A2. Mol Pharmacol 62:143–153. https://doi.org/10.1124/mol.62.1.143

    CAS  Article  PubMed  Google Scholar 

  110. Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ (2016) CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/beta-catenin signaling via Sp1 upregulation. PLoS ONE 11:e0151598. https://doi.org/10.1371/journal.pone.0151598

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  111. Kwon YJ, Cho NH, Ye DJ, Baek HS, Ryu YS, Chun YJ (2018) Cytochrome P450 1B1 promotes cancer cell survival via specificity protein 1 (Sp1)-mediated suppression of death receptor 4. J Toxicol Environ Health A 81:278–287. https://doi.org/10.1080/15287394.2018.1440186

    CAS  Article  PubMed  Google Scholar 

  112. Lakhani NJ, Sarkar MA, Venitz J, Figg WD (2003) 2-Methoxyestradiol, a promising anticancer agent. Pharmacotherapy 23:165–172. https://doi.org/10.1592/phco.23.2.165.32088

    CAS  Article  PubMed  Google Scholar 

  113. Larsen MC, Bushkofsky JR, Gorman T, Adhami V, Mukhtar H, Wang S, Reeder SB, Sheibani N, Jefcoate CR (2015) Cytochrome P450 1B1: an unexpected modulator of liver fatty acid homeostasis. Arch Biochem Biophys 571:21–39. https://doi.org/10.1016/j.abb.2015.02.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Lesche D, Mostafa S, Everall I, Pantelis C, Bousman CA (2020) Impact of CYP1A2, CYP2C19, and CYP2D6 genotype- and phenoconversion-predicted enzyme activity on clozapine exposure and symptom severity. Pharmacogenomics J 20:192–201. https://doi.org/10.1038/s41397-019-0108-y

    CAS  Article  PubMed  Google Scholar 

  115. Lewis BC, Mackenzie PI, Miners JO (2011) Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine. Mol Pharmacol 80:879–888. https://doi.org/10.1124/mol.111.072124

    CAS  Article  PubMed  Google Scholar 

  116. Li F, Zhu W, Gonzalez FJ (2017) Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol Ther 178:18–30. https://doi.org/10.1016/j.pharmthera.2017.03.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Libby RT, Smith RS, Savinova OV, Zabaleta A, Martin JE, Gonzalez FJ, John SW (2003) Modification of ocular defects in mouse developmental glaucoma models by tyrosinase. Science 299:1578–1581. https://doi.org/10.1126/science.1080095

    CAS  Article  PubMed  Google Scholar 

  118. Lingappan K, Jiang W, Wang L, Wang G, Couroucli XI, Shivanna B, Welty SE, Barrios R, Khan MF, Nebert DW, Roberts LJ, Moorthy B (2014) Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress. Toxicol Sci 141:68–77. https://doi.org/10.1093/toxsci/kfu106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Liu X, Huang T, Li L, Tang Y, Tian Y, Wang S, Fan C (2015) CYP1B1 deficiency ameliorates obesity and glucose intolerance induced by high fat diet in adult C57BL/6J mice. Am J Transl Res 7:761–771

    PubMed  PubMed Central  Google Scholar 

  120. Liu Q, Wang W, Zhang Y, Cui Y, Xu S, Li S (2020) Bisphenol A regulates cytochrome P450 1B1 through miR-27b-3p and induces carp lymphocyte oxidative stress leading to apoptosis. Fish Shellfish Immunol 102:489–498. https://doi.org/10.1016/j.fsi.2020.05.009

    CAS  Article  PubMed  Google Scholar 

  121. Lo SN, Wang CW, Chen YS, Huang CC, Wu TS, Li LA, Lee IJ, Ueng YF (2017) Berberine activates aryl hydrocarbon receptor but suppresses CYP1A1 induction through miR-21-3p stimulation in MCF-7 breast cancer cells. Molecules 22:1847. https://doi.org/10.3390/molecules22111847

    CAS  Article  PubMed Central  Google Scholar 

  122. Lopez-Garrido MP, Blanco-Marchite C, Sanchez-Sanchez F, Lopez-Sanchez E, Chaques-Alepuz V, Campos-Mollo E, Salinas-Sánchez AS, Escribano J (2010) Functional analysis of CYP1B1 mutations and association of heterozygous hypomorphic alleles with primary open-angle glaucoma. Clin Genet 77:70–78. https://doi.org/10.1111/j.1399-0004.2009.01284.x

    CAS  Article  PubMed  Google Scholar 

  123. Lu J, Shang X, Zhong W, Xu Y, Shi R, Wang X (2020) New insights of CYP1A in endogenous metabolism: a focus on single nucleotide polymorphisms and diseases. Acta Pharm Sin B 10:91–104. https://doi.org/10.1016/j.apsb.2019.11.016

    CAS  Article  PubMed  Google Scholar 

  124. Ma X, Idle JR, Krausz KW, Gonzalez FJ (2005) Metabolism of melatonin by human cytochromes p450. Drug Metab Dispos 33:489–494. https://doi.org/10.1124/dmd.104.002410

    CAS  Article  PubMed  Google Scholar 

  125. Manche SK, Jangala M, Putta P, Koralla RM, Akka J (2016) Association of oxidative stress gene polymorphisms with presbycusis. Gene 593:277–283. https://doi.org/10.1016/j.gene.2016.08.029

    CAS  Article  PubMed  Google Scholar 

  126. Manda VK, Avula B, Dale OR, Ali Z, Khan IA, Walker LA, Khan SI (2017) PXR mediated induction of CYP3A4, CYP1A2, and P-gp by Mitragyna speciosa and its alkaloids. Phytother Res 31:1935–1945. https://doi.org/10.1002/ptr.5942

    CAS  Article  PubMed  Google Scholar 

  127. Mao M, Wu Z, Chen J (2016) MicroRNA-187-5p suppresses cancer cell progression in non-small cell lung cancer (NSCLC) through down-regulation of CYP1B1. Biochem Biophys Res Commun 478:649–655. https://doi.org/10.1016/j.bbrc.2016.08.001

    CAS  Article  PubMed  Google Scholar 

  128. Mao Y, Yang L, Chen Q, Li G, Sun Y, Wu J, Xoing Z, Liu Y, Li H, Zhang Y (2020) The influence of CYP1A1 and CYP1A2 polymorphisms on stroke risk in the Chinese population. Lipids Health Dis 19:221. https://doi.org/10.1186/s12944-020-01370-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Masferrer JL, Dunn MW, Schwartzman ML (1990a) 12(R)-hydroxyeicosatetraenoic acid, an endogenous corneal arachidonate metabolite, lowers intraocular pressure in rabbits. Invest Ophthalmol Vis Sci 31:535–539

    CAS  PubMed  Google Scholar 

  130. Masferrer JL, Rios AP, Schwartzman ML (1990b) Inhibition of renal, cardiac and corneal (Na(+)-K+)ATPase by 12(R)-hydroxyeicosatetraenoic acid. Biochem Pharmacol 39:1971–1974. https://doi.org/10.1016/0006-2952(90)90617-t

    CAS  Article  PubMed  Google Scholar 

  131. Maturu P, Wei-Liang Y, Jiang W, Wang L, Lingappan K, Barrios R, Liang Y, Moorthy B, Couroucli XI (2017) Newborn mice lacking the gene for Cyp1a1 are more susceptible to oxygen-mediated lung injury, and are rescued by postnatal beta-naphthoflavone administration: implications for bronchopulmonary dysplasia in premature infants. Toxicol Sci 157:260–271. https://doi.org/10.1093/toxsci/kfx036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI (2001) Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol 62:207–212. https://doi.org/10.1016/s0006-2952(01)00643-8

    CAS  Article  PubMed  Google Scholar 

  133. McLean L, Soto U, Agama K, Francis J, Jimenez R, Pommier Y, Sowers L, Brantley E (2008) Aminoflavone induces oxidative DNA damage and reactive oxidative species-mediated apoptosis in breast cancer cells. Int J Cancer 122:1665–1674. https://doi.org/10.1002/ijc.23244

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. McLemore TL, Adelberg S, Liu MC, McMahon NA, Yu SJ, Hubbard WC, Czerwinski M, Wood TG, Storeng R, Lubet RA, Eggleston JC, Boyd MR, Hines RN (1990) Expression of CYP1A1 gene in patients with lung cancer: evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J Natl Cancer Inst 82:1333–1339. https://doi.org/10.1093/jnci/82.16.1333

    CAS  Article  PubMed  Google Scholar 

  135. Méar L, Herr M, Fauconnier A, Pineau C, Vialard F (2020) Polymorphisms and endometriosis: a systematic review and meta-analyses. Hum Reprod Update 26:73–102. https://doi.org/10.1093/humupd/dmz034

    CAS  Article  PubMed  Google Scholar 

  136. Melki R, Lefort N, Brezin AP, Garchon HJ (2005) Association of a common coding polymorphism (N453S) of the cytochrome P450 1B1 (CYP1B1) gene with optic disc cupping and visual field alteration in French patients with primary open-angle glaucoma. Mol Vis 11:1012–1017

    CAS  PubMed  Google Scholar 

  137. Merrell MD, Cherrington NJ (2011) Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev 43:317–334. https://doi.org/10.3109/03602532.2011.577781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Mescher M, Haarmann-Stemman T (2018) Modulation of CYP1A1 metabolism: from adverse health effects to chemoprevention and therapeutic options. Pharmacol Ther 187:71–87. https://doi.org/10.1016/j.pharmthera.2018.02.012

    CAS  Article  PubMed  Google Scholar 

  139. Miyajima A, Furihata T, Chiba K (2009) Functional analysis of GC Box and its CpG methylation in the regulation of CYP1A2 gene expression. Drug Metab Pharmacokinet 24:269–276. https://doi.org/10.2133/dmpk.24.269

    CAS  Article  PubMed  Google Scholar 

  140. Mookherjee S, Acharya M, Banerjee D, Bhattacharjee A, Ray K (2012) Molecular basis for involvement of CYP1B1 in MYOC upregulation and its potential implication in glaucoma pathogenesis. PLoS ONE 7:e45077. https://doi.org/10.1371/journal.pone.0045077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145:5–15. https://doi.org/10.1093/toxsci/kfv040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Morgan ET (2001) Regulation of cytochrome p450 by inflammatory mediators: why and how? Drug Metab Dispos 29:207–212

    CAS  PubMed  Google Scholar 

  143. Mu W, Hu C, Zhang H, Qu Z, Cen J, Qiu Z, Li C, Ren H, Li Y, He X, Shi X, Hui L (2015) miR-27b synergizes with anticancer drugs via p53 activation and CYP1B1 suppression. Cell Res 25:477–495. https://doi.org/10.1038/cr.2015.23

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Mueck AO, Seeger H (2010) 2-Methoxyestradiol–biology and mechanism of action. Steroids 75:625–631. https://doi.org/10.1016/j.steroids.2010.02.016

    CAS  Article  PubMed  Google Scholar 

  145. Murayama N, Soyama A, Saito Y, Nakajima Y, Komamura K, Ueno K, Kamakura S, Kitakaze M, Kimura H, Goto Y, Saitoh O, Katoh M, Ohnuma T, Kawai M, Sugai K, Ohtsuki T, Suzuki C, Minami N, Ozawa S, Sawada J (2004) Six novel nonsynonymous CYP1A2 gene polymorphisms: catalytic activities of the naturally occurring variant enzymes. J Pharmacol Exp Ther 308:300–306. https://doi.org/10.1124/jpet.103.055798

    CAS  Article  PubMed  Google Scholar 

  146. Murray GI, Taylor MC, McFadyen MC, McKay JA, Greenlee WF, Burke MD, Melvin WT (1997) Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res 57:3026–3031

    CAS  PubMed  Google Scholar 

  147. Murray GI, Melvin WT, Greenlee WF, Burke MD (2001) Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1. Annu Rev Pharmacol Toxicol 41:297–316. https://doi.org/10.1146/annurev.pharmtox.41.1.297

    CAS  Article  PubMed  Google Scholar 

  148. Nagatake T, Kunisawa J (2019) Emerging roles of metabolites of omega3 and omega6 essential fatty acids in the control of intestinal inflammation. Int Immunol 31:569–577. https://doi.org/10.1093/intimm/dxy086

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Naif HM, Al-Obaide MAI, Hassani HH, Hamdan AS, Kalaf ZS (2018) Association of cytochrome CYP1A1 gene polymorphisms and tobacco smoking with the risk of breast cancer in women from Iraq. Front Public Health 6:96. https://doi.org/10.3389/fpubh.2018.00096

    Article  PubMed  PubMed Central  Google Scholar 

  150. Nath N, Mishra P, Panda AK, Mishra R (2020) Polymorphisms and haplotypes of TLR4, TLR9 and CYP1A1 genes possibly interfere with high-risk human papillomavirus infection and cervical cancer susceptibility in Jharkhand. India Int Immunopharmacol 88:106925. https://doi.org/10.1016/j.intimp.2020.106925

    CAS  Article  PubMed  Google Scholar 

  151. Nebert DW (1991) Proposed role of drug-metabolizing enzymes: regulation of steady state levels of the ligands that effect growth, homeostasis, differentiation, and neuroendocrine functions. Mol Endocrinol 5:1203–1214. https://doi.org/10.1210/mend-5-9-1203

    CAS  Article  PubMed  Google Scholar 

  152. Nebert DW, Dalton TP (2006) The role of cytochrome P450 enzymes in endogenous signalling pathways and environmental carcinogenesis. Nat Rev Cancer 6:947–960. https://doi.org/10.1038/nrc2015

    CAS  Article  PubMed  Google Scholar 

  153. Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56:945–993. https://doi.org/10.1146/annurev.bi.56.070187.004501

    CAS  Article  PubMed  Google Scholar 

  154. Nebert DW, Dalton TP, Okey AB, Gonzalez FJ (2004) Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer. J Biol Chem 279:23847–23850. https://doi.org/10.1074/jbc.R400004200

    CAS  Article  PubMed  Google Scholar 

  155. Nebert DW, Wikvall K, Miller WL (2013) Human cytochromes P450 in health and disease. Philos Trans R Soc Lond B Biol Sci 368:20120431. https://doi.org/10.1098/rstb.2012.0431

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Nelson DR (2009) The cytochrome p450 homepage. Hum Genom 4:59–65. https://doi.org/10.1186/1479-7364-4-1-59

    CAS  Article  Google Scholar 

  157. Nelson DR, Zeldin DC, Hoffman SM, Maltais LJ, Wain HM, Nebert DW (2004) Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, pseudogenes and alternative-splice variants. Pharmacogenetics 14:1–18. https://doi.org/10.1097/00008571-200401000-00001

    CAS  Article  PubMed  Google Scholar 

  158. Nishida CR, Everett S, Ortiz de Montellano PR (2013) Specificity determinants of CYP1B1 estradiol hydroxylation. Mol Pharmacol 84:451–458. https://doi.org/10.1124/mol.113.087700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P (2004) Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 75:80–88. https://doi.org/10.1016/j.clpt.2003.09.007

    CAS  Article  PubMed  Google Scholar 

  160. Ortiz de Montellano PR (2013) Cytochrome P450-activated prodrugs. Future Med Chem 5:213–228. https://doi.org/10.4155/fmc.12.197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. Ozono S, Yamaguchi A, Mochizuki H, Kawakami T, Fujimoto K, Otani T, Yoshida K, Ichinei M, Yamashita T, Hirao Y (2002) Caffeine test in predicting flutamide-induced hepatic injury in patients with prostate cancer. Prostate Cancer Prostatic Dis 5:128–131. https://doi.org/10.1038/sj.pcan.4500564

    CAS  Article  PubMed  Google Scholar 

  162. Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I, Lucio M, Giuseppe Z, Santonastaso M (2009) CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 27:1594–1601. https://doi.org/10.1097/HJH.0b013e32832ba850

    CAS  Article  PubMed  Google Scholar 

  163. Palatini P, Benetti E, Mos L, Garavelli G, Mazzer A, Cozzio S, Fania C, Casiglia E (2015) Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur J Epidemiol 30:209–217. https://doi.org/10.1007/s10654-015-9990-z

    CAS  Article  PubMed  Google Scholar 

  164. Patel SA, Bhambra U, Charalambous MP, David RM, Edwards RJ, Lightfoot T, Boobis AR, Gooderham NJ (2014) Interleukin-6 mediated upregulation of CYP1B1 and CYP2E1 in colorectal cancer involves DNA methylation, miR27b and STAT3. Br J Cancer 111:2287–2296. https://doi.org/10.1038/bjc.2014.540

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Perepechaeva ML, Gubanova NV, Grishanova AY (2020) Effects of prolonged subchronic benzo(alpha)pyrene exposure on rat liver morphology and CYP1A expression during treatment with menadione, quercetin, or tocopherol. Drug Chem Toxicol. https://doi.org/10.1080/01480545.2020.1849270

    Article  PubMed  Google Scholar 

  166. Perera V, Gross AS, Polasek TM, Qin Y, Rao G, Forrest A, Xu J, McLachlan AJ (2013) Considering CYP1A2 phenotype and genotype for optimizing the dose of olanzapine in the management of schizophrenia. Expert Opin Drug Metab Toxicol 9:1115–1137. https://doi.org/10.1517/17425255.2013.795540

    CAS  Article  PubMed  Google Scholar 

  167. Pingili AK, Jennings BL, Mukherjee K, Akroush W, Gonzalez FJ, Malik KU (2020) 6beta-Hydroxytestosterone, a metabolite of testosterone generated by CYP1B1, contributes to vascular changes in angiotensin II-induced hypertension in male mice. Biol Sex Differ 11:4. https://doi.org/10.1186/s13293-019-0280-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. Pobst LJ, Ames MM (2006) CYP1A1 activation of aminoflavone leads to DNA damage in human tumor cell lines. Cancer Chemother Pharmacol 57:569–576. https://doi.org/10.1007/s00280-005-0075-7

    CAS  Article  PubMed  Google Scholar 

  169. Pors K, Loadman PM, Shnyder SD, Sutherland M, Sheldrake HM, Guino M, Kiakos K, Hartley JA, Searcey M, Patterson LH (2011) Modification of the duocarmycin pharmacophore enables CYP1A1 targeting for biological activity. Chem Commun (Camb) 47:12062–12064. https://doi.org/10.1039/c1cc15638a

    CAS  Article  Google Scholar 

  170. Potter GA, Patterson LH, Wanogho E, Perry PJ, Butler PC, Ijaz T, Ruparelia KC, Lamb JH, Farmer PB, Stanley LA, Burke MD (2002) The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br J Cancer 86:774–778. https://doi.org/10.1038/sj.bjc.6600197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. Rada JA, Wiechmann AF (2006) Melatonin receptors in chick ocular tissues: implications for a role of melatonin in ocular growth regulation. Invest Ophthalmol Vis Sci 47:25–33. https://doi.org/10.1167/iovs.05-0195

    Article  PubMed  Google Scholar 

  172. Rannug A (2020) How the AHR became important in intestinal homeostasis-A Diurnal FICZ/AHR/CYP1A1 feedback controls both immunity and immunopathology. Int J Mol Sci 21:5681. https://doi.org/10.3390/ijms21165681

    CAS  Article  PubMed Central  Google Scholar 

  173. Ren J, Chen GG, Liu Y, Su X, Hu B, Leung BC, Wang Y, Ho RL, Yang S, Lu G, Lee CG, Lai PB (2016) Cytochrome P450 1A2 metabolizes 17beta-estradiol to suppress hepatocellular carcinoma. PLoS ONE 11:e0153863. https://doi.org/10.1371/journal.pone.0153863

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. Rendic S, Guengerich FP (2015) Survey of Human Oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem Res Toxicol 28:38–42. https://doi.org/10.1021/tx500444e

    CAS  Article  PubMed  Google Scholar 

  175. Rieger JK, Klein K, Winter S, Zanger UM (2013) Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 41:1752–1762. https://doi.org/10.1124/dmd.113.052126

    CAS  Article  PubMed  Google Scholar 

  176. Rochat B, Morsman JM, Murray GI, Figg WD, McLeod HL (2001) Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation? J Pharmacol Exp Ther 296:537–541

    CAS  PubMed  Google Scholar 

  177. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25:1679–1691. https://doi.org/10.1038/sj.onc.1209377

    CAS  Article  PubMed  Google Scholar 

  178. Ruan CJ, de Leon J (2020) Is there a future for CYP1A2 pharmacogenetics in the optimal dosing of clozapine? Pharmacogenomics 21:369–373. https://doi.org/10.2217/pgs-2020-0015

    CAS  Article  PubMed  Google Scholar 

  179. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C–>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47:445–449. https://doi.org/10.1046/j.1365-2125.1999.00898.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  180. Sachse C, Bhambra U, Smith G, Lightfoot TJ, Barrett JH, Scollay J, Garner RC, Boobis AR, Wolf CR, Gooderham NJ (2003) Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 55:68–76. https://doi.org/10.1046/j.1365-2125.2003.01733.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  181. Sale S, Tunstall RG, Ruparelia KC, Butler PC, Potter GA, Steward WP, Gescher AJ (2006) Effects of the potential chemopreventive agent DMU-135 on adenoma development in the ApcMin+ mouse. Invest New Drugs 24:459–464. https://doi.org/10.1007/s10637-006-5947-0

    CAS  Article  PubMed  Google Scholar 

  182. Sanchez-Siles M, Pelegrin-Hernandez JP, Hellin-Meseguer D, Guerrero-Sanchez Y, Corno-Caparros A, Cabezas-Herrera J, Pastor-Quirante F, Fernández-Ruiz JA, Aliaga-Sánchez A, Lucero-Berdugo M, Camacho-Alonso F (2020) Genotype of null polymorphisms in genes GSTM1, GSTT1, CYP1A1, and CYP1A1*2A (rs4646903 T>C)/CYP1A1*2C (rs1048943 A>G) in patients with larynx cancer in southeast Spain. Cancers (Basel) 12:2478. https://doi.org/10.3390/cancers12092478

    CAS  Article  Google Scholar 

  183. Santes-Palacios R, Ornelas-Ayala D, Cabanas N, Marroquin-Perez A, Hernandez-Magana A, Del Rosario O-R, Camacho-Carranza R, Espinosa-Aguirre JJ (2016) Regulation of human cytochrome P4501A1 (hCYP1A1): a plausible target for chemoprevention? Biomed Res Int 2016:5341081. https://doi.org/10.1155/2016/5341081

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  184. Santes-Palacios R, Marroquin-Perez AL, Hernandez-Ojeda SL, Camacho-Carranza R, Govezensky T, Espinosa-Aguirre JJ (2020) Human CYP1A1 inhibition by flavonoids. Toxicol In Vitro 62:104681. https://doi.org/10.1016/j.tiv.2019.104681

    CAS  Article  PubMed  Google Scholar 

  185. Sarfarazi M (1997) Recent advances in molecular genetics of glaucomas. Hum Mol Genet 6:1667–1677. https://doi.org/10.1093/hmg/6.10.1667

    CAS  Article  PubMed  Google Scholar 

  186. Sarfarazi M, Stoilov I (2000) Molecular genetics of primary congenital glaucoma. Eye (Lond) 14:422–428. https://doi.org/10.1038/eye.2000.126

    Article  Google Scholar 

  187. Sasaki M, Kaneuchi M, Fujimoto S, Tanaka Y, Dahiya R (2003) CYP1B1 gene in endometrial cancer. Mol Cell Endocrinol 202:171–176. https://doi.org/10.1016/s0303-7207(03)00079-0

    CAS  Article  PubMed  Google Scholar 

  188. Sen A, Stark H (2019) Role of cytochrome P450 polymorphisms and functions in development of ulcerative colitis. World J Gastroenterol 25:2846–2862. https://doi.org/10.3748/wjg.v25.i23.2846

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  189. Sengupta D, Banerjee S, Mukhopadhyay P, Guha U, Ganguly K, Bhattacharjee S, Sengupta M (2020) A meta-analysis and in silico analysis of polymorphic variants conferring breast cancer risk in the Indian subcontinent. Future Oncol 16:20121–22142. https://doi.org/10.2217/fon-2020-0333

    CAS  Article  Google Scholar 

  190. Shouman S, Wagih M, Kamel M (2016) Leptin influences estrogen metabolism and increases DNA adduct formation in breast cancer cells. Cancer Biol Med 13:505–513. https://doi.org/10.20892/j.issn.2095-3941.2016.0079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  191. Siddique MUM, McCann GJ, Sonawane VR, Horley N, Gatchie L, Joshi P, Bharate SB, Jayaprakash V, Sinha BN, Chaudhuri B (2017) Quinazoline derivatives as selective CYP1B1 inhibitors. Eur J Med Chem 130:320–327. https://doi.org/10.1016/j.ejmech.2017.02.032

    CAS  Article  Google Scholar 

  192. Singh SM, Gauthier S, Labrie F (2000) Androgen receptor antagonists (antiandrogens): structure-activity relationships. Curr Med Chem 7:211–247. https://doi.org/10.2174/0929867003375371

    CAS  Article  PubMed  Google Scholar 

  193. Singh P, Dutta SR, Song CY, Oh S, Gonzalez FJ, Malik KU (2020) Brain testosterone-CYP1B1 (cytochrome P450 1B1) generated metabolite 6beta-hydroxytestosterone promotes neurogenic hypertension and inflammation. Hypertension 76:1006–1018. https://doi.org/10.1161/HYPERTENSIONAHA.120.15567

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. Siokas V, Karampinis E, Aloizou AM, Mentis AA, Liakos P, Papadimitriou D, Liampas I, Nasios G, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E (2020a) CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol Sci. https://doi.org/10.1007/s10072-020-04535-x

    Article  PubMed  Google Scholar 

  195. Siokas V, Kardaras D, Aloizou AM, Liampas I, Papageorgiou E, Drakoulis N, Tsatsakis A, Mitsias PD, Hadjigeorgiou GM, Tsironi EE, Dardiotis E (2020b) CYP1A2 rs762551 and ADORA2A rs5760423 polymorphisms in patients with blepharospasm. J Mol Neurosci 70:1370–1375. https://doi.org/10.1007/s12031-020-01553-4

    CAS  Article  PubMed  Google Scholar 

  196. Sissung TM, Danesi R, Price DK, Steinberg SM, de Wit R, Zahid M, Gaikwad N, Cavalieri E, Dahut WL, Sackett DL, Figg WD, Sparreboom A (2008) Association of the CYP1B1*3 allele with survival in patients with prostate cancer receiving docetaxel. Mol Cancer Ther 7:19–26. https://doi.org/10.1158/1535-7163.MCT-07-0557

    CAS  Article  PubMed  Google Scholar 

  197. Slattery ML, Samowtiz W, Ma K, Murtaugh M, Sweeney C, Levin TR, Neuhausen S (2004) CYP1A1, cigarette smoking, and colon and rectal cancer. Am J Epidemiol 160:842–852. https://doi.org/10.1093/aje/kwh298

    Article  PubMed  Google Scholar 

  198. Sturchio E, Colombo T, Boccia P, Carucci N, Meconi C, Minoia C, Macino G (2014) Arsenic exposure triggers a shift in microRNA expression. Sci Total Environ 472:672–680. https://doi.org/10.1016/j.scitotenv.2013.11.092

    CAS  Article  PubMed  Google Scholar 

  199. Swart M, Dandara C (2014) Genetic variation in the 3’-UTR of CYP1A2, CYP2B6, CYP2D6, CYP3A4, NR1I2, and UGT2B7: potential effects on regulation by microRNA and pharmacogenomics relevance. Front Genet 5:167. https://doi.org/10.3389/fgene.2014.00167

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  200. Sychev DA, Ashraf GM, Svistunov AA, Maksimov ML, Tarasov VV, Chubarev VN, Otdelenov VA, Denisenko NP, Barreto GE, Aliev G (2018) The cytochrome P450 isoenzyme and some new opportunities for the prediction of negative drug interaction in vivo. Drug Des Devel Ther 12:1147–1156. https://doi.org/10.2147/DDDT.S149069

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  201. Tahir RA, Hassan F, Kareem A, Iftikhar U, Sehgal SA (2019) Ligand-based pharmacophore modeling and virtual screening to discover novel CYP1A1 inhibitors. Curr Top Med Chem 19:2782–2794. https://doi.org/10.2174/1568026619666191112104217

    CAS  Article  PubMed  Google Scholar 

  202. Takano H, Yamaguchi JI, Kato S, Hamada M, Tada M, Endo H (2021) Downregulation of CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes by prolyl hydroxylase domain 2 inhibitors via hypoxia-inducible factor- α stabilization. Drug Metab Dispos 49:20–30. https://doi.org/10.1124/dmd.120.000124

    CAS  Article  PubMed  Google Scholar 

  203. Tan BS, Tiong KH, Muruhadas A, Randhawa N, Choo HL, Bradshaw TD, Stevens MF, Leong CO (2011) CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol Cancer Ther 10:1982–1992. https://doi.org/10.1158/1535-7163.MCT-11-0391

    CAS  Article  PubMed  Google Scholar 

  204. Tanaka Y, Sasaki M, Kaneuchi M, Shiina H, Igawa M, Dahiya R (2002) Polymorphisms of the CYP1B1 gene have higher risk for prostate cancer. Biochem Biophys Res Commun 296:820–826. https://doi.org/10.1016/s0006-291x(02)02004-1

    CAS  Article  PubMed  Google Scholar 

  205. Tian LX, Tang X, Ma W, Wang J, Zhang W, Liu K, Chen T, Zhu JY, Liang HP (2020a) Knockout of cytochrome P450 1A1 enhances lipopolysaccharide-induced acute lung injury in mice by targeting NF-kappaB activation. FEBS Open Bio 10:2316–2328. https://doi.org/10.1002/2211-5463.12977

    CAS  Article  PubMed Central  Google Scholar 

  206. Tian LX, Tang X, Zhu JY, Luo L, Ma XY, Cheng SW, Zhang W, Tang WQ, Ma W, Yang X, Lv CZ, Liang HP (2020b) Cytochrome P450 1A1 enhances inflammatory responses and impedes phagocytosis of bacteria in macrophages during sepsis. Cell Commun Signal 18:70. https://doi.org/10.1186/s12964-020-0523-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  207. Tokizane T, Shiina H, Igawa M, Enokida H, Urakami S, Kawakami T, Ogishima T, Okino ST, Li LC, Tanaka Y, Nonomura N, Okuyama A, Dahiya R (2005) Cytochrome P450 1B1 is overexpressed and regulated by hypomethylation in prostate cancer. Clin Cancer Res 11:5793–5801. https://doi.org/10.1158/1078-0432.CCR-04-2545

    CAS  Article  PubMed  Google Scholar 

  208. Tsuchiya Y, Nakajima M, Takagi S, Taniya T, Yokoi T (2006) MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 66:9090–9098. https://doi.org/10.1158/0008-5472.CAN-06-1403

    CAS  Article  PubMed  Google Scholar 

  209. Urry E, Jetter A, Landolt HP (2016) Assessment of CYP1A2 enzyme activity in relation to type-2 diabetes and habitual caffeine intake. Nutr Metab (Lond) 13:66. https://doi.org/10.1186/s12986-016-0126-6

    CAS  Article  Google Scholar 

  210. Vasiliou V, Gonzalez FJ (2008) Role of CYP1B1 in glaucoma. Annu Rev Pharmacol Toxicol 48:333–358. https://doi.org/10.1146/annurev.pharmtox.48.061807.154729

    CAS  Article  PubMed  Google Scholar 

  211. Veith H, Southall N, Huang R, James T, Fayne D, Artemenko N, Shen M, Inglese J, Austin CP, Lloyd DG, Auld DS (2009) Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat Biotechnol 27:1050–1055. https://doi.org/10.1038/nbt.1581

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  212. Vincent AL, Billingsley G, Buys Y, Levin AV, Priston M, Trope G, Williams-Lyn D, Heon E (2002) Digenic inheritance of early-onset glaucoma: CYP1B1, a potential modifier gene. Am J Hum Genet 70:448–460. https://doi.org/10.1086/338709

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  213. Vizeli P, Schmid Y, Prestin K, Schwabedissen MZ, HE, Liechti ME, (2017) Pharmacogenetics of ecstasy: CYP1A2, CYP2C19, and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects. Eur Neuropsychopharmacol 27:232–238. https://doi.org/10.1016/j.euroneuro.2017.01.008

    CAS  Article  PubMed  Google Scholar 

  214. Wang H, Tompkins LM (2008) CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 9:598–610. https://doi.org/10.2174/138920008785821710

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  215. Wang X, Li W, Song W, Xu L, Zhang L, Feng X, Lu R, Meng H (2019) Association of CYP1A1 rs1048943 variant with aggressive periodontitis and its interaction with hyperlipidemia on the periodontal status. J Periodontal Res 54:546–554. https://doi.org/10.1111/jre.12658

    CAS  Article  PubMed  Google Scholar 

  216. Wang Y, He X, Li C, Ma Y, Xue W, Hu B, Wang J, Zhang T, Zhang F (2020) Carvedilol serves as a novel CYP1B1 inhibitor, a systematic drug repurposing approach through structure-based virtual screening and experimental verification. Eur J Med Chem 193:112235. https://doi.org/10.1016/j.ejmech.2020.112235

    CAS  Article  PubMed  Google Scholar 

  217. Watanabe J, Shimada T, Gillam EM, Ikuta T, Suemasu K, Higashi Y, Gotoh O, Kawajiri K (2000) Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics 10:25–33. https://doi.org/10.1097/00008571-200002000-00004

    CAS  Article  PubMed  Google Scholar 

  218. Wei JH, Luo QQ, Tang YJ, Chen JX, Huang CL, Lu DG, Tang QL (2018) Upregulation of microRNA-320 decreases the risk of developing steroid-induced avascular necrosis of femoral head by inhibiting CYP1A2 both in vivo and in vitro. Gene 660:136–144. https://doi.org/10.1016/j.gene.2018.03.045

    CAS  Article  PubMed  Google Scholar 

  219. Weisschuh N, Schiefer U (2003) Progress in the genetics of glaucoma. Dev Ophthalmol 37:83–93. https://doi.org/10.1159/000072040

    CAS  Article  PubMed  Google Scholar 

  220. Wieckowska A, Feldstein AE (2008) Diagnosis of nonalcoholic fatty liver disease: invasive versus noninvasive. Semin Liver Dis 28:386–395. https://doi.org/10.1055/s-0028-1091983

    CAS  Article  PubMed  Google Scholar 

  221. Wild MJ, McKillop D, Butters CJ (1999) Determination of the human cytochrome P450 isoforms involved in the metabolism of zolmitriptan. Xenobiotica 29:847–857. https://doi.org/10.1080/004982599238290

    CAS  Article  PubMed  Google Scholar 

  222. Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A (2018) Human enzymes for organic synthesis. Angew Chem Int Ed Engl 57:13406–13423. https://doi.org/10.1002/anie.201800678

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  223. Wohak LE, Krais AM, Kucab JE, Stertmann J, Ovrebo S, Seidel A, Phillips DH, Arlt VM (2016) Carcinogenic polycyclic aromatic hydrocarbons induce CYP1A1 in human cells via a p53-dependent mechanism. Arch Toxicol 90:291–304. https://doi.org/10.1007/s00204-014-1409-1

    CAS  Article  PubMed  Google Scholar 

  224. Wu R, Cui X, Dong W, Zhou M, Simms HH, Wang P (2006) Suppression of hepatocyte CYP1A2 expression by Kupffer cells via AhR pathway: the central role of proinflammatory cytokines. Int J Mol Med 18:339–346. https://doi.org/10.3892/ijmm.18.2.339

    CAS  PubMed  Google Scholar 

  225. Wuensch T, Heucke N, Wizenty J, Quint J, Sinn B, Arsenic R, Jara M, Kaffarnik M, Pratschke J, Stockmann M (2019) Hepatic CYP1A2 activity in liver tumors and the implications for preoperative volume-function analysis. Am J Physiol Gastrointest Liver Physiol 316:G608–G614. https://doi.org/10.1152/ajpgi.00335.2018

    CAS  Article  PubMed  Google Scholar 

  226. Xie S, Tu Z, Xiong J, Kang G, Zhao L, Hu W, Tan H, Tembo KM, Ding Q, Deng X, Huang J, Zhang Q (2017) CXCR4 promotes cisplatin-resistance of non-small cell lung cancer in a CYP1B1-dependent manner. Oncol Rep 37:921–928. https://doi.org/10.3892/or.2016.5289

    CAS  Article  PubMed  Google Scholar 

  227. Yaghini FA, Song CY, Lavrentyev EN, Ghafoor HU, Fang XR, Estes AM, Campbell WB, Malik KU (2010) Angiotensin II-induced vascular smooth muscle cell migration and growth are mediated by cytochrome P450 1B1-dependent superoxide generation. Hypertension 55:1461–1467. https://doi.org/10.1161/HYPERTENSIONAHA.110.150029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  228. Yamazaki H, Shaw PM, Guengerich FP, Shimada T (1998) Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem Res Toxicol 11:659–665. https://doi.org/10.1021/tx970217f

    CAS  Article  PubMed  Google Scholar 

  229. Yang Z, Li H, Tang Y, Liu X, Liao Q, Fan C, Wang S (2019) CYP1B1 deiciency ameliorates learning and memory deficits caused by high fat diet in mice. Am J Transl Res 11:2194–2206

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Ye W, Chen R, Chen X, Huang B, Lin R, Xie X, Chen J, Jiang J, Deng Y, Wen J (2019) AhR regulates the expression of human cytochrome P450 1A1 (CYP1A1) by recruiting Sp1. FEBS J 286:4215–4231. https://doi.org/10.1111/febs.14956

    CAS  Article  PubMed  Google Scholar 

  231. Yoshinari K, Yoda N, Toriyabe T, Yamazoe Y (2010) Constitutive androstane receptor transcriptionally activates human CYP1A1 and CYP1A2 genes through a common regulatory element in the 5’-flanking region. Biochem Pharmacol 79:261–269. https://doi.org/10.1016/j.bcp.2009.08.008

    CAS  Article  PubMed  Google Scholar 

  232. Yoshioka Y, Hashimoto E, Yatsuji S, Kaneda H, Taniai M, Tokushige K, Shiratori K (2004) Nonalcoholic steatohepatitis: cirrhosis, hepatocellular carcinoma, and burnt-out NASH. J Gastroenterol 39:1215–1218. https://doi.org/10.1007/s00535-004-1475-x

    Article  PubMed  Google Scholar 

  233. Yu J, Wang N, Gong Z, Liu L, Yang S, Chen GG, Lai PBS (2020) Cytochrome P450 1A2 overcomes nuclear factor kappa B-mediated sorafenib resistance in hepatocellular carcinoma. Oncogene. https://doi.org/10.1038/s41388-020-01545-z

    Article  PubMed  PubMed Central  Google Scholar 

  234. Yuan Q, Chen Y, Li X, Zhang Z, Chu H (2019) Ambient fine particulate matter (PM2.5) induces oxidative stress and pro-inflammatory response via up-regulating the expression of CYP1A1/1B1 in human bronchial epithelial cells in vitro. Mutat Res Genet Toxicol Environ Mutagen 839:40–48. https://doi.org/10.1016/j.mrgentox.2018.12.005

    CAS  Article  PubMed  Google Scholar 

  235. Zhang L, Savas U, Alexander DL, Jefcoate CR (1998) Characterization of the mouse Cyp1B1 gene. Identification of an enhancer region that directs aryl hydrocarbon receptor-mediated constitutive and induced expression. J Biol Chem 273:5174–5183. https://doi.org/10.1074/jbc.273.9.5174

    CAS  Article  PubMed  Google Scholar 

  236. Zhang KL, Ma JX, Chen XY, Sun Y, Kong QY, Liu J, Li H (2004) Frequent CYP1A1 expression in gastric cancers and their related lesions. Oncol Rep 12:1335–1340

    CAS  PubMed  Google Scholar 

  237. Zhang H, Li L, Xu Y (2013a) CYP1B1 polymorphisms and susceptibility to prostate cancer: a meta-analysis. PLoS ONE 8:e68634. https://doi.org/10.1371/journal.pone.0068634

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  238. Zhang Y, Liu X, McHale C, Li R, Zhang L, Wu Y, Ye X, Yang X, Ding S (2013b) Bone marrow injury induced via oxidative stress in mice by inhalation exposure to formaldehyde. PLoS ONE 8:e74974. https://doi.org/10.1371/journal.pone.0074974

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  239. Zhang WY, Wang H, Qi S, Wang X, Li X, Zhou K, Zhang Y, Gao MQ (2018a) CYP1A1 relieves lipopolysaccharide-induced inflammatory responses in bovine mammary epithelial cells. Mediators Inflamm 2018:4093285. https://doi.org/10.1155/2018/4093285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  240. Zhang XB, Zeng YM, Chen XY, Zhang YX, Ding JZ, Xue C (2018b) Decreased expression of hepatic cytochrome P450 1A2 (CYP1A2) in a chronic intermittent hypoxia mouse model. J Thorac Dis 10:825–834. https://doi.org/10.21037/jtd.2017.12.106

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  241. Zhang J, Song J, Liang X, Yin Y, Zuo T, Chen D, Shen Q (2019a) Hyaluronic acid-modified cationic nanoparticles overcome enzyme CYP1B1-mediated breast cancer multidrug resistance. Nanomedicine (Lond) 14:447–464. https://doi.org/10.2217/nnm-2018-0244

    CAS  Article  Google Scholar 

  242. Zhang M, Wang Q, Wan KW, Ahmed W, Phoenix DA, Zhang Z, Elrayess MA, Elhissi A, Sun X (2019b) Liposome mediated-CYP1A1 gene silencing nanomedicine prepared using lipid film-coated proliposomes as a potential treatment strategy of lung cancer. Int J Pharm 566:185–193. https://doi.org/10.1016/j.ijpharm.2019.04.078

    CAS  Article  PubMed  Google Scholar 

  243. Zhang Y, Wang S, Huang Y, Yang K, Liu Y, Bi X, Liu C, Xiong J, Zhang B, Zhao J, Nie L (2020) Inhibition of CYP1B1 ameliorates cardiac hypertrophy induced by uremic toxin. Mol Med Rep 21:393–404. https://doi.org/10.3892/mmr.2019.10810

    CAS  Article  PubMed  Google Scholar 

  244. Zheng Y, Wang JJ, Sun L, Li HL (2012) Association between CYP1A1 polymorphism and colorectal cancer risk: a meta-analysis. Mol Biol Rep 39:3533–3540. https://doi.org/10.1007/s11033-011-1126-2

    CAS  Article  PubMed  Google Scholar 

  245. Zhou B, Wang X, Li F, Wang Y, Yang L, Zhen X, Tan W (2017) Mitochondrial activity and oxidative stress functions are influenced by the activation of AhR-induced CYP1A1 overexpression in cardiomyocytes. Mol Med Rep 16:174–180. https://doi.org/10.3892/mmr.2017.6580

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  246. Zhu BT, Conney AH (1998) Functional role of estrogen metabolism in target cells: review and perspectives. Carcinogenesis 19:1–27. https://doi.org/10.1093/carcin/19.1.1

    Article  PubMed  Google Scholar 

  247. Zordoky BN, El-Kadi AO (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125:446–463. https://doi.org/10.1016/j.pharmthera.2009.12.002

    CAS  Article  PubMed  Google Scholar 

  248. Zullino DF, Delessert D, Eap CB, Preisig M, Baumann P (2002) Tobacco and cannabis smoking cessation can lead to intoxication with clozapine or olanzapine. Int Clin Psychopharmacol 17:141–143. https://doi.org/10.1097/00004850-200205000-00008

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) funded by Korean government (MSIP) (NRF-2015R1A5A1008958).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young-Jin Chun.

Ethics declarations

Conflict of interest

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kwon, YJ., Shin, S. & Chun, YJ. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch. Pharm. Res. 44, 63–83 (2021). https://doi.org/10.1007/s12272-021-01306-w

Download citation

Keywords

  • Cytochrome P450 (CYP) 1 enzymes
  • Polymorphism
  • Metabolic diseases
  • Cancer
  • Drug metabolism