Curcumin derivatives for Type 2 Diabetes management and prevention of complications

Abstract

Type 2 diabetes Mellitus (T2DM) is characterized by chronically increased blood glucose levels, which is associated with impairment of the inflammatory and oxidative state and dyslipidaemia. Although it is considered a world heath concern and one of the most studied diseases, we are still pursuing an effective therapy for both the pathophysiological mechanisms and the complications. Curcumin, a natural compound found in the rhizome of Curcuma longa, is well known for its numerous biological activities, as demonstrated by several studies supporting that curcumin possesses hypoglycaemic, hypolipidemic, anti-inflammatory and antioxidant properties, among others. These effects have been explored to the attenuation of hyperglycaemia and progression of DM complications, being appointed as a potential therapeutic approach. Besides its strong intrinsic activity, the polyphenol has low bioavailability, compromising its therapeutic efficacy. In order to overcome this limitation, several chemical strategies have been applied to curcumin, such as drug delivery systems, chemical manipulation and the use of adjuvant therapies. Given the promising results obtained with curcumin derivative, in this review we discuss not only the therapeutic targets of curcumin, but also its most recently developed analogues and their efficacy in the management of T2DM pathophysiology and complications.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abd Allah ESH, Gomaa AMS (2015) Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: role of angiotensin converting enzyme 1. Appl Physiol Nutr Metab 40:1061–1067. https://doi.org/10.1139/apnm-2015-0145

    CAS  Article  PubMed  Google Scholar 

  2. Abdel-Mageid AD, Abou-Salem MES, Salaam NMHA, El-Garhy HAS (2018) The potential effect of garlic extract and curcumin nanoparticles against complication accompanied with experimentally induced diabetes in rats. Phytomedicine 43:126–134. https://doi.org/10.1016/j.phymed.2018.04.039

    CAS  Article  PubMed  Google Scholar 

  3. Adibian M, Hodaei H, Nikpayam O, Sohrab G, Hekmatdoost A, Hedayati M (2019) The effects of curcumin supplementation on high-sensitivity C-reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Phyther Res 33:1374–1383. https://doi.org/10.1002/ptr.6328

    CAS  Article  Google Scholar 

  4. Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M (2018) In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: curcumin therapeutic potential. Int J Biol Macromol 120:2418–2430. https://doi.org/10.1016/j.ijbiomac.2018.09.010

    CAS  Article  PubMed  Google Scholar 

  5. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB (2007) Bioavailability of curcumin: problems and promises. Mol Pharm 4:807–818. https://doi.org/10.1021/mp700113r

    CAS  Article  PubMed  Google Scholar 

  6. Asadi S, Gholami MS, Siassi F, Qorbani M, Khamoshian K, Sotoudeh G (2019) Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: a randomized double-blind placebo- controlled clinical trial. Complement Ther Med 43:253–260. https://doi.org/10.1016/j.ctim.2019.02.014

    Article  PubMed  Google Scholar 

  7. Assis RP, Arcaro CA, Gutierres VO, Oliveira JO, Costa PI, Baviera AM, Brunetti IL (2017) Combined effects of curcumin and lycopene or bixin in yoghurt on inhibition of LDL oxidation and increases in HDL and paraoxonase levels in streptozotocin-diabetic rats. Int J Mol Sci 18:1–20. https://doi.org/10.3390/ijms18040332

    CAS  Article  Google Scholar 

  8. Bale S, Khurana A, Reddy ASS, Singh M, Godugu C (2016) Overview on therapeutic applications of microparticulate drug delivery systems. Crit Rev Ther Drug Carrier Syst 33:309–361. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015798

    Article  PubMed  Google Scholar 

  9. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. https://doi.org/10.1038/414813a

    CAS  Article  PubMed  Google Scholar 

  10. Bulboacă AE, Porfire AS, Tefas LR, Boarescu PM, Bolboacă SD, Stănescu IC, Bulboacă AC, Dogaru G (2019) Liposomal curcumin is better than curcumin to alleviate complications in experimental diabetic mellitus. Molecules 24:846. https://doi.org/10.3390/molecules24050846

    CAS  Article  PubMed Central  Google Scholar 

  11. Calle MC, Fernandez ML (2012) Inflammation and type 2 diabetes. Diabetes Metab 38:183–191. https://doi.org/10.1016/j.diabet.2011.11.006

    CAS  Article  PubMed  Google Scholar 

  12. Cao L, Zhi D, Han J, Kumar Sah S, Xie Y (2019) Combinational effect of curcumin and metformin against gentamicin-induced nephrotoxicity: Involvement of antioxidative, anti-inflammatory and antiapoptotic pathway. J Food Biochem 43:e12836. https://doi.org/10.1111/jfbc.12836

    CAS  Article  PubMed  Google Scholar 

  13. Chen H, Yang X, Lu K, Lu C, Zhao Y, Zheng S, Li J, Huang Z, Huang Y, Zhang Y, Liang G (2017) Inhibition of high glucose-induced inflammation and fibrosis by a novel curcumin derivative prevents renal and heart injury in diabetic mice. Toxicol Lett 278:48–58. https://doi.org/10.1016/j.toxlet.2017.07.212

    CAS  Article  PubMed  Google Scholar 

  14. Cicero AFG, Sahebkar A, Fogacci F, Bove M, Giovannini M, Borghi C (2019) Effects of phytosomal curcumin on anthropometric parameters, insulin resistance, cortisolemia and non-alcoholic fatty liver disease indices: a double-blind, placebo-controlled clinical trial. Eur J Nutr 59:477–483. https://doi.org/10.1007/s00394-019-01916-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Das KK, Razzaghi-Asl N, Tikare SN, Di Santo R, Costi R, Messore A, Pescatori L, Crucitti GC, Jargar JG, Dhundasi SA, Saso L (2016) Hypoglycemic activity of curcumin synthetic analogues in alloxan-induced diabetic rats. J Enzyme Inhib Med Chem 31:99–105. https://doi.org/10.3109/14756366.2015.1004061

    CAS  Article  PubMed  Google Scholar 

  16. Daugherty DJ, Marquez A, Calcutt NA, Schubert D (2018) A novel curcumin derivative for the treatment of diabetic neuropathy. Neuropharmacology 129:26–35. https://doi.org/10.1016/j.neuropharm.2017.11.007

    CAS  Article  PubMed  Google Scholar 

  17. Defronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R (2015) Type 2 diabetes mellitus. Nat Rev Dis Prim. https://doi.org/10.1038/nrdp.2015.19

    Article  PubMed  Google Scholar 

  18. Diabetes Care (2019) Classification and diagnosis of diabetes: standards of medical care in diabetes –2019. Diabetes Care. American Diabetes Association, Arlington, pp S13–S28. https://doi.org/10.2337/dc19-S002

    Google Scholar 

  19. Ding L, Li J, Song B, Xiao X, Zhang B, Qi M, Huang W, Yang L, Wang Z (2016) Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway. Toxicol Appl Pharmacol 304:99–109. https://doi.org/10.1016/j.taap.2016.05.011

    CAS  Article  PubMed  Google Scholar 

  20. El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, Eissa LA, El-Sherbiny IM (2017) Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine 12:1689–1711. https://doi.org/10.2217/nnm-2017-0106

    CAS  Article  PubMed  Google Scholar 

  21. El-Naggar ME, Al-Joufi F, Anwar M, Attia MF, El-Bana MA (2019) Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats. Coll Surf B Biointerfaces 177:389–398. https://doi.org/10.1016/j.colsurfb.2019.02.024

    CAS  Article  Google Scholar 

  22. Elburki MS, Moore DD, Terezakis NG, Zhang Y, Lee HM, Johnson F, Golub LM (2017) A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. J Periodontal Res 52:186–200. https://doi.org/10.1111/jre.12381

    CAS  Article  PubMed  Google Scholar 

  23. Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V (2019) Diabetic neuropathy. Nat Rev Dis Prim 5:1–18. https://doi.org/10.1038/s41572-019-0092-1

    Article  Google Scholar 

  24. Folli F, Corradi D, Fanti P, Davalli A, Paez A, Giaccari A, Perego C, Muscogiuri G (2011) The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Curr Diabetes Rev 7:313–324. https://doi.org/10.2174/157339911797415585

    CAS  Article  PubMed  Google Scholar 

  25. Ganugula R, Arora M, Jaisamut P, Wiwattanapatapee R, Jørgensen HG, Venkatpurwar VP, Zhou B, Rodrigues Hoffmann A, Basu R, Guo S, Majeti NVRK (2017) Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br J Pharmacol 174:2074–2084. https://doi.org/10.1111/bph.13816

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. GBD 2013 Mortality and Causes of Death Collaborators (2015) Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:117–171. https://doi.org/10.1016/S0140-6736(14)61682-2

    Article  Google Scholar 

  27. Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Gutierres VO, Campos ML, Arcaro CA, Assis RP, Baldan-Cimatti HM, Peccinini RG, Paula-Gomes S, Kettelhut IC, Baviera AM, Brunetti IL (2015) Curcumin pharmacokinetic and pharmacodynamic evidences in streptozotocin-diabetic rats support the antidiabetic activity to be via metabolite(s). Evidence-based Complement Altern Med 2015:1–13. https://doi.org/10.1155/2015/678218

    Article  Google Scholar 

  29. Han J, Oh J, Ihm SH, Lee M (2016) Peptide micelle-mediated curcumin delivery for protection of islet β-cells under hypoxia. J Drug Target 24:618–623. https://doi.org/10.3109/1061186X.2015.1132220

    CAS  Article  PubMed  Google Scholar 

  30. Hewlings S, Kalman D (2017) Curcumin: a review of its’ effects on human health. Foods 6:92. https://doi.org/10.3390/foods6100092

    CAS  Article  PubMed Central  Google Scholar 

  31. Ho C, Hsu YC, Lei CC, Mau SC, Shih YH, Lin CL (2016) Curcumin rescues diabetic renal fibrosis by targeting superoxide-mediated wnt signaling pathways. Am J Med Sci 351:286–295. https://doi.org/10.1016/j.amjms.2015.12.017

    Article  PubMed  Google Scholar 

  32. Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G (2019) The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: a randomized, double-blind clinical trial. Diabetol Metab Syndr 11:1–8. https://doi.org/10.1186/s13098-019-0437-7

    CAS  Article  Google Scholar 

  33. Huang Y (2017) IDF Diabetes Atlas 8th edition. International Diabetes Federation, Brussels

    Google Scholar 

  34. Kadam S, Kanitkar M, Dixit K, Deshpande R, Seshadri V, Kale V (2018) Curcumin reverses diabetes-induced endothelial progenitor cell dysfunction by enhancing MnSOD expression and activity in vitro and in vivo. J Tissue Eng Regen Med 12:1594–1607. https://doi.org/10.1002/term.2684

    CAS  Article  PubMed  Google Scholar 

  35. Kato M, Nishikawa S, Ikehata A, Dochi K, Tani T, Takahashi T, Imaizumi A, Tsuda T (2017) Curcumin improves glucose tolerance via stimulation of glucagon-like peptide-1 secretion. Mol Nutr Food Res 61:1–6. https://doi.org/10.1002/mnfr.201600471

    CAS  Article  Google Scholar 

  36. Kaur G, Invally M, Chintamaneni M (2016) Influence of piperine and quercetin on antidiabetic potential of curcumin. J Complement Integr Med 13:247–255. https://doi.org/10.1515/jcim-2016-0016

    CAS  Article  PubMed  Google Scholar 

  37. Kim BH, Lee ES, Choi R, Nawaboot J, Lee MY, Lee EY, Kim HS, Chung CH (2016) Protective effects of curcumin on renal oxidative stress and lipid metabolism in a rat model of type 2 diabetic nephropathy. Yonsei Med J 57:664–673. https://doi.org/10.3349/ymj.2016.57.3.664

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Lao CD, Iv MTR, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE, Ruffin IVMT, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:1–4. https://doi.org/10.1186/1472-6882-6-10

    CAS  Article  Google Scholar 

  39. Li C, Miao X, Lou Y, Lu Z, Adhikari BK, Wang Y, Liu Q, Sun J, Wang Y (2018) Cardioprotective effects of the novel curcumin analogue C66 in diabetic mice is dependent on JNK2 inactivation. J Cell Mol Med 22:6314–6326. https://doi.org/10.1111/jcmm.13924

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Li C, Miao X, Wang S, Adhikari BK, Wang X, Sun J, Liu Q, Tong Q, Wang Y (2018) Novel curcumin C66 that protects diabetes-induced aortic damage was associated with suppressing JNK2 and upregulating Nrf2 expression and function. Oxid Med Cell Longev 2018:12. https://doi.org/10.1155/2018/5783239

    CAS  Article  Google Scholar 

  41. Li J, Wang P, Ying J, Chen Z, Yu S (2016) Curcumin attenuates retinal vascular leakage by inhibiting calcium/calmodulin-dependent protein kinase II activity in streptozotocin-induced diabetes. Cell Physiol Biochem 39:1196–1208. https://doi.org/10.1159/000447826

    CAS  Article  PubMed  Google Scholar 

  42. Li Y, Zhang ZZ (2018) Sustained curcumin release from PLGA microspheres improves bone formation under diabetic conditions by inhibiting the reactive oxygen species production. Drug Des Devel Ther 12:1453–1466. https://doi.org/10.2147/DDDT.S154334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, Zhai G (2016) Oral bioavailability of curcumin: problems and advancements. J Drug Target 24:694–702. https://doi.org/10.3109/1061186X.2016.1157883

    CAS  Article  PubMed  Google Scholar 

  44. Lu M, Yin N, Liu W, Cui X, Chen S, Wang E (2017) Curcumin Ameliorates Diabetic Nephropathy by Suppressing NLRP3 Inflammasome Signaling. Biomed Res Int 2017:10. https://doi.org/10.1155/2017/1516985

    CAS  Article  Google Scholar 

  45. Ma J, Liu J, Yu H, Chen Y, Wang Q, Xiang L (2016) Beneficial effect of metformin on nerve regeneration and functional recovery after sciatic nerve crush injury in diabetic rats. Neurochem Res 41:1130–1137. https://doi.org/10.1007/s11064-015-1803-y

    CAS  Article  PubMed  Google Scholar 

  46. Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Zachariah B (2016) Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: potential role of serine kinases. Chem Biol Interact 244:187–194. https://doi.org/10.1016/j.cbi.2015.12.012

    CAS  Article  PubMed  Google Scholar 

  47. Matafome P, Seiça R (2017) Function and dysfunction of adipose tissue. Adv Neurobiol 19:3–31. https://doi.org/10.1007/978-3-319-63260-5_1

    Article  PubMed  Google Scholar 

  48. Matafome P, Sena C, Seiça R (2013) Methylglyoxal, obesity, and diabetes. Endocrine 43:472–484. https://doi.org/10.1007/s12020-012-9795-8

    CAS  Article  PubMed  Google Scholar 

  49. Matafome P, Rodrigues T, Sena C, Seiça R (2017) Methylglyoxal in metabolic disorders: facts, myths, and promises. Med Res Rev 37:368–403. https://doi.org/10.1002/med.21410

    Article  PubMed  Google Scholar 

  50. Maugeri A, Mazzone MG, Giuliano F, Vinciguerra M, Basile G, Barchitta M, Agodi A (2018) Curcumin modulates DNA methyltransferase functions in a cellular model of diabetic retinopathy. Oxid Med Cell Longev 2018:5407482. https://doi.org/10.1155/2018/5407482

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Meng B, Li J, Cao H, Cao JL (2013) Antioxidant and antiinflammatory activities of curcumin on diabetes mellitus and its complications. Curr Pharm Des 19:2101–2113. https://doi.org/10.2174/1381612811319110011

    CAS  Article  PubMed  Google Scholar 

  52. Mirhafez SR, Farimani AR, Dehhabe M, Bidkhori M, Hariri M, Motlagh Ghouchani BFN, Abdollahi F (2019) Effect of phytosomal curcumin on circulating levels of adiponectin and leptin in patients with non-alcoholic fatty liver disease: a randomized, double-blind, placebo-controlled clinical trial. J Gastrointest Liver Dis 28:183–189. https://doi.org/10.15403/jgld-179

    Article  Google Scholar 

  53. Mirhafez SR, Rezai A, Dehabeh M, Gh BFNM, Bidkhori M, Sahebkar A, Hariri M, (2019) Efficacy of phytosomal curcumin among patients with non-alcoholic fatty liver disease. Int J Vitam Nutr Res. https://doi.org/10.1024/0300-9831/a000629

    Article  PubMed  Google Scholar 

  54. Orasanu G, Plutzky J (2009) The pathologic continuum of diabetic vascular disease. J Am Coll Cardiol 53:S35–S42. https://doi.org/10.1016/j.jacc.2008.09.055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Pan M, Huang T-M, Lin J-K (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486–494

    CAS  PubMed  Google Scholar 

  56. Pan Y, Zhao D, Yu N, An T, Miao J, Mo F, Gu Y, Zhang D, Gao S, Jiang G (2017) Curcumin improves glycolipid metabolism through regulating peroxisome proliferator activated receptor γ signalling pathway in high-fat diet-induced obese mice and 3t3-l1 adipocytes. R Soc Open Sci 4:170917. https://doi.org/10.1098/rsos.170917

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Panahi Y, Khalili N, Sahebi E, Namazi S, Atkin SL, Majeed M, Sahebkar A (2017) Curcuminoids plus piperine modulate adipokines in Type 2 diabetes mellitus. Curr Clin Pharmacol 12:253–258. https://doi.org/10.2174/1574884713666180104095641

    CAS  Article  PubMed  Google Scholar 

  58. Panahi Y, Kianpour P, Mohtashami R, Jafari R, Simental-Mendía LE, Sahebkar A (2017) Efficacy and safety of phytosomal curcumin in non-alcoholic fatty liver disease: a randomized controlled trial. Drug Res (Stuttg) 67:244–251. https://doi.org/10.1055/s-0043-100019

    CAS  Article  Google Scholar 

  59. Paolino D, Vero A, Cosco D, Pecora TMG, Cianciolo S, Fresta M, Pignatello R (2016) Improvement of oral bioavailability of curcumin upon microencapsulation with methacrylic copolymers. Front Pharmacol 7:1–9. https://doi.org/10.3389/fphar.2016.00485

    CAS  Article  Google Scholar 

  60. Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 16:1–33. https://doi.org/10.1186/s12951-018-0392-8

    CAS  Article  Google Scholar 

  61. Pavari F, Mingione A, Brasacchio C, Soldati L (2019) Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients 11:1837. https://doi.org/10.3390/nu11081837

    CAS  Article  Google Scholar 

  62. Potenza MA, Gagliardi S, Nacci C, Carratu’ MR, Montagnani MMRC (2009) Endothelial dysfunction in diabetes: from mechanisms to therapeutic targets. Curr Med Chem 16:94–112. https://doi.org/10.2174/092986709787002853

    CAS  Article  PubMed  Google Scholar 

  63. Prasad S, Tyagi AK, Aggarwal BB (2014) Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat 46:2–18. https://doi.org/10.4143/crt.2014.46.1.2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, Sahebkar A (2016) Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phyther Res 1548:1540–1548. https://doi.org/10.1002/ptr.5659

    CAS  Article  Google Scholar 

  65. Rask-Madsen C, King GL (2013) Vascular complications of diabetes: mechanisms of injury and protective factors. Cell Metab 17:20–33. https://doi.org/10.1016/j.cmet.2012.11.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Rivera-Mancía S, Lozada-García MC, Pedraza-Chaverri J (2015) Experimental evidence for curcumin and its analogs for management of diabetes mellitus and its associated complications. Eur J Pharmacol 756:30–37. https://doi.org/10.1016/j.ejphar.2015.02.045

    CAS  Article  PubMed  Google Scholar 

  67. Rodrigues T, Matafome P, Seiça R (2014) A vascular piece in the puzzle of adipose tissue dysfunction: mechanisms and consequences. Arch Physiol Biochem 120:1–11. https://doi.org/10.3109/13813455.2013.838971

    CAS  Article  PubMed  Google Scholar 

  68. Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR (2017) Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging 9:187–208. https://doi.org/10.18632/aging.101149

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Schalkwijk CG, Stehouwer CDA (2005) Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci 109:143–159. https://doi.org/10.1042/CS20050025

    CAS  Article  PubMed  Google Scholar 

  70. Song Z, Revelo X, Shao W, Tian L, Zeng K, Lei H, Sun HS, Woo M, Winer D, Jin T (2018) Dietary curcumin intervention targets mouse white adipose tissue inflammation and brown adipose tissue UCP1 expression. Obesity 26:547–558. https://doi.org/10.1002/oby.22110

    CAS  Article  PubMed  Google Scholar 

  71. Su L, Wang Y, Chi H (2017) Effect of curcumin on glucose and lipid metabolism, FFAs and TNF-α in serum of type 2 diabetes mellitus rat models. Saudi J Biol Sci 24:1776–1780. https://doi.org/10.1016/j.sjbs.2017.11.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Thota RN, Dias CB, Abbott KA, Acharya SH, Garg ML (2018) Curcumin alleviates postprandial glycaemic response in healthy subjects: a cross-over, randomized controlled study. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-32032-x

    CAS  Article  Google Scholar 

  73. Tong F, Chai R, Jiang H, Dong B (2018) In vitro/vivo drug release and anti-diabetic cardiomyopathy properties of curcumin/PBLG-PEG-PBLG nanoparticles. Int J Nanomed 13:1945–1962. https://doi.org/10.2147/IJN.S153763

    CAS  Article  Google Scholar 

  74. Wu H, Kong L, Tan Y, Epstein PN, Zeng J, Gu J, Liang G, Kong M, Chen X, Miao L, Cai L (2016) C66 ameliorates diabetic nephropathy in mice by both upregulating NRF2 function via increase in miR-200a and inhibiting miR-21. Diabetologia 59:1558–1568. https://doi.org/10.1007/s00125-016-3958-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Xu X, Cai Y, Yu Y (2018) Effects of a novel curcumin derivative on the functions of kidney in streptozotocin-induced type 2 diabetic rats. Inflammopharmacology 26:1257–1264. https://doi.org/10.1007/s10787-018-0449-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Yang F, Yu J, Ke F, Lan M, Li D, Tan K, Ling J, Wang Y, Wu K, Li D (2018) Curcumin alleviates diabetic retinopathy in experimental diabetic rats. Ophthalmic Res 60:43–54. https://doi.org/10.1159/000486574

    CAS  Article  PubMed  Google Scholar 

  77. Yang KY, Lin LC, Tseng TY, Wang SC, Tsai TH (2007) Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Anal Technol Biomed Life Sci 853:183–189. https://doi.org/10.1016/j.jchromb.2007.03.010

    CAS  Article  Google Scholar 

  78. Zhang X, Liang D, Guo L, Liang W, Jiang Y, Li H, Zhao Y, Lu S, Chi ZH (2015) Curcumin protects renal tubular epithelial cells from high glucose-induced epithelial-to-mesenchymal transition through Nrf2-mediated upregulation of heme oxygenase-1. Mol Med Rep 12:1347–1355. https://doi.org/10.3892/mmr.2015.3556

    CAS  Article  PubMed  Google Scholar 

  79. Zhao L, Pan Y, Peng K, Wang Z, Li J, Li D, Tong C, Wang Y, Liang G (2015) Inhibition of 11β-HsD1 by LG13 improves glucose metabolism in type 2 diabetic mice. J Mol Endocrinol 55:119–131. https://doi.org/10.1530/JME-14-0268

    CAS  Article  PubMed  Google Scholar 

  80. Zheng Y, Ley SH, Hu FB (2017) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by the Portuguese Foundation of Science and Technology (Strategic Projects UID/NEU/04539/2013 and UID/NEU/04539/2019).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paulo Matafome.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, S., Monteiro-Alfredo, T., Silva, S. et al. Curcumin derivatives for Type 2 Diabetes management and prevention of complications. Arch. Pharm. Res. 43, 567–581 (2020). https://doi.org/10.1007/s12272-020-01240-3

Download citation

Keywords

  • Type 2 diabetes
  • Curcumin derivatives
  • Diabetic complications
  • Oxidative stress