Skip to main content
Log in

Spectroscopic methods to analyze drug metabolites

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Drug metabolites have been monitored with various types of newly developed techniques and/or combination of common analytical methods, which could provide a great deal of information on metabolite profiling. Because it is not easy to analyze whole drug metabolites qualitatively and quantitatively, a single solution of analytical techniques is combined in a multilateral manner to cover the widest range of drug metabolites. Mass-based spectroscopic analysis of drug metabolites has been expanded with the help of other parameter-based methods. The current development of metabolism studies through contemporary pharmaceutical research are reviewed with an overview on conventionally used spectroscopic methods. Several technical approaches for conducting drug metabolic profiling through spectroscopic methods are discussed in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADME/T:

Absorption, distribution, metabolism, excretion, and toxicity

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

GC–MS:

Gas chromatography-mass spectrometry

LC–MS:

Liquid chromatography-mass spectrometry

UV–Vis:

Ultraviolet–visible

IR:

Infrared

CD:

Circular dichroism

SEM:

Scanning electron microscopy

ESI:

Electrospray ionization

EI:

Electron impact ionization

MALDI:

Matrix assisted laser desorption ionization

HPLC:

High-performance liquid chromatography

TOF:

Time of flight

DNA:

Deoxyribonucleic acid

MS/MS:

Tandem mass spectrometry

UHPLC:

Ultra-high performance liquid chromatography

FID:

Free induction decay

MHz:

Megahertz

HMBC:

Heteronuclear multiple-bond correlation

HSQC:

Heteronuclear single quantum coherence

HAS:

Human serum albumin

NIR:

Near-infrared

NIRF:

Near-infrared fluorescence

IR-MALDESI:

Infrared matrix-assisted laser desorption electrospray ionization

IR-ATR:

Infrared attenuated total reflection

FRET:

Fluorescence resonance energy transfer

FP:

Fluorescence polarization

TRP:

Tryptophan

TYR:

Tyrosine

PHE:

Phenylalanine

CARS:

Coherent anti-Stokes Raman scattering

XPS:

X-ray photoelectron spectroscopy

AES:

Auger electron spectroscopy

ESCA:

Electron spectroscopy for chemical analysis

SPR:

Surface plasmon resonance

TEM:

Transmission electron microscopy

BBB:

Blood-brain barrier

IMS:

Imaging mass spectrometry

PCA:

Principle component analysis

COSA:

Clustering objects on subsets of attributes

ANOVA:

Analysis of variance

PLS:

Partial least squares

HCA:

Hierarchical cluster analysis

SIMCA:

Soft independent modelling of classification analogy

References

  • Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiol Plant 132:117–135

    CAS  PubMed  Google Scholar 

  • Ansermot N, Brawand-Amey M, Kottelat A, Eap CB (2013) Fast quantification of ten psychotropic drugs and metabolites in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry for therapeutic drug monitoring. J Chromatogr A 1292:160–172

    Article  CAS  PubMed  Google Scholar 

  • Arjunan V, Santhanam R, Marchewka MK, Mohan S (2014) Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol–an analgesic drug. Spectrochim Acta A Mol Biomol Spectrosc 122:315–330

    Article  CAS  PubMed  Google Scholar 

  • Arlauckas SP, Popov AV, Delikatny EJ (2014) Direct inhibition of choline kinase by a near-infrared fluorescent carbocyanine. Mol Cancer Ther 13:2149–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audus KL, Borchardt RT (1986) Characterization of an in vitro blood–brain barrier model system for studying drug transport and metabolism. Pharm Res 3:81–87

    Article  CAS  PubMed  Google Scholar 

  • Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ (1984) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30:426–432

    CAS  PubMed  Google Scholar 

  • Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC (2015) Assessing drug and metabolite detection in liver tissue by UV-MALDI and IR-MALDESI mass spectrometry imaging coupled to FT-ICR MS. Int J Mass Spectrom 377:448–455

    Article  CAS  PubMed  Google Scholar 

  • Bathaie SZ, Nikfarjam L, Rahmanpour R, Moosavi-Movahedi AA (2010) Spectroscopic studies of the interaction of aspirin and its important metabolite, salicylate ion, with DNA, A.T and G.C rich sequences. Spectrochim Acta A Mol Biomol Spectrosc 77:1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Bax A, Grishaev A (2005) Weak alignment NMR: a hawk-eyed view of biomolecular structure. Curr Opin Struct Biol 15:563–570

    Article  CAS  PubMed  Google Scholar 

  • Beebe KR, Pell RJ, Seasholtz MB (1998) Chemometrics: a practical guide 4. Wiley, New York

    Google Scholar 

  • Burton KI, Everett JR, Newman MJ, Pullen FS, Richards DS, Swanson AG (1997) On-line liquid chromatography coupled with high field NMR and mass spectrometry (LC-NMR-MS): a new technique for drug metabolite structure elucidation. J Pharm Biomed Anal 15:1903–1912

    Article  CAS  PubMed  Google Scholar 

  • Callender R, Deng H (1994) Nonresonance Raman difference spectroscopy: a general probe of protein structure, ligand binding, enzymatic catalysis, and the structures of other biomacromolecules. Annu Rev Biophys Biomol Struct 23:215–245

    Article  CAS  PubMed  Google Scholar 

  • Canoa P, Rivadulla ML, Popplewell J, Van Oosten R, Gomez G, Fall Y (2017) Use of surface plasmon resonance in the binding study of vitamin D, metabolites and analogues with vitamin D binding protein. Anal Bioanal Chem 409:2547–2558

    Article  CAS  PubMed  Google Scholar 

  • Carey P (1982) Biochemical applications of Raman and resonance Raman spectroscopes. Elsevier, Amsterdam

    Google Scholar 

  • Chen DJ, Hu HG, Xing SF, Liu HM, Piao XL (2015) Metabolite profiling of gypenoside LVI in rat after oral and intravenous administration. Arch Pharm Res 38:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Choi CJ, Wu HY, George S, Weyhenmeyer J, Cunningham BT (2012) Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites. Lab Chip 12:574–581

    Article  CAS  PubMed  Google Scholar 

  • Choong E, Rudaz S, Kottelat A, Guillarme D, Veuthey JL, Eap CB (2009) Therapeutic drug monitoring of seven psychotropic drugs and four metabolites in human plasma by HPLC-MS. J Pharm Biomed Anal 50:1000–1008

    Article  CAS  PubMed  Google Scholar 

  • Cornett DS, Frappier SL, Caprioli RM (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue. Anal Chem 80:5648–5653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cotton T, Clark R, Hester R (1988) Spectroscopy of surfaces. Advances in spectroscopy, Wiley, Chichester

    Google Scholar 

  • Couchman L, Morgan PE (2011) LC-MS in analytical toxicology: some practical considerations. Biomed Chromatogr 25:100–123

    Article  CAS  PubMed  Google Scholar 

  • Couchman L, Morgan PE, Flanagan RJ (2011) Basic drug analysis by strong cation-exchange liquid chromatography-tandem mass spectrometry: simultaneous analysis of amisulpride, and of metamfetamine and amfetamine in serum/plasma. Biomed Chromatogr 25:867–872

    Article  CAS  PubMed  Google Scholar 

  • Craig WS, Gaber BP (1977) Laser Raman scattering from an enzyme of well-documented structure, human carbonic anhydrase B. J Am Chem Soc 99:4130–4134

    Article  CAS  PubMed  Google Scholar 

  • Crisafulli C, Fabbri C, Porcelli S, Drago A, Spina E, De Ronchi D, Serretti A (2011) Pharmacogenetics of antidepressants. Front Pharmacol 2:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cutler P, Bell DJ, Birrell HC, Connelly JC, Connor SC, Holmes E, Mitchell BC, Monte SY, Neville BA, Pickford R, Polley S, Schneider K, Skehel JM (1999) An integrated proteomic approach to studying glomerular nephrotoxicity. Electrophoresis 20:3647–3658

    Article  CAS  PubMed  Google Scholar 

  • Damian D, Orešič M, Verheij E, Meulman J, Friedman J, Adourian A, Morel N, Smilde A, Van Der Greef J (2007) Applications of a new subspace clustering algorithm (COSA) in medical systems biology. Metabolomics 3:69–77

    Article  CAS  Google Scholar 

  • De Jong LA, Uges DR, Franke JP, Bischoff R (2005) Receptor-ligand binding assays: technologies and applications. J Chromatogr B Anal Technol Biomed Life Sci 829:1–25

    Article  CAS  Google Scholar 

  • De Santana FJ, Bonato PS (2008) Enantioselective analysis of mirtazapine and its two major metabolites in human plasma by liquid chromatography-mass spectrometry after three-phase liquid-phase microextraction. Anal Chim Acta 606:80–91

    Article  PubMed  CAS  Google Scholar 

  • Debrus B, Broseus J, Guillarme D, Lebrun P, Hubert P, Veuthey JL, Esseiva P, Rudaz S (2011) Innovative methodology to transfer conventional GC-MS heroin profiling to UHPLC-MS/MS. Anal Bioanal Chem 399:2719–2730

    Article  CAS  PubMed  Google Scholar 

  • Defernez M, Gunning YM, Parr AJ, Sherphed LVT, Davies HV, Clquhoun IJ (2004) NMR and HPLC-UV profiling of potatoes with genetic modifications to metabolic pathways. J Agric Food Chem 52:6075–6085

    Article  CAS  PubMed  Google Scholar 

  • Dempster MA, Jones JA, Last IR, Macdonald BF, Prebble KA (1993) Near-infrared methods for the identification of tablets in clinical trial supplies. J Pharm Biomed Anal 11:1087–1092

    Article  CAS  PubMed  Google Scholar 

  • Dockal M, Carter DC, Rüker F (1999) The three recombinant domains of human serum albumin structural characterization and ligand binding properties. J Biol Chem 274:29303–29310

    Article  CAS  PubMed  Google Scholar 

  • Dona AC, Jimenez B, Schaefer H, Humpfer E, Spraul M, Lewis MR, Pearce JTM, Holmes E, Lindon JC, Nicholson JK (2014) Precision high throughput proton NMR spectroscopy of human urine, serum and plasma for large-scale metabolic phenotyping. Anal Chem 86:9887–9894

    Article  CAS  PubMed  Google Scholar 

  • Donato MT, Jiménez N, Castell JV, Gómez-Lechón MJ (2004) Fluorescence-based assays for screening nine cytochrome P450 (P450) activities in intact cells expressing individual human P450 enzymes. Drug Metab Dispos 32:699–706

    Article  CAS  PubMed  Google Scholar 

  • Dunko A, Dovletoglou A (2002) Moisture assay of an antifungal by near-infrared diffuse reflectance spectroscopy. J Pharm Biomed Anal 28:145–154

    Article  CAS  PubMed  Google Scholar 

  • Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R (2007) Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics 8:1243–1266

    Article  CAS  PubMed  Google Scholar 

  • Eriksson L (1999) Introduction to multi-and megavariate data analysis using projection methods (PCA & PLS). Umetrics AB, Umeå

    Google Scholar 

  • Evans CL, Xie XS (2008) Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu Rev Anal Chem (Palo Alto Calif) 1:883–909

    Article  CAS  Google Scholar 

  • Ferentz AE, Wagner G (2000) NMR spectroscopy: a multifaceted approach to macromolecular structure. Q Rev Biophys 33:29–65

    Article  CAS  PubMed  Google Scholar 

  • Fernandez Mdel M, Di Fazio V, Wille SM, Kummer N, Samyn N (2014) A quantitative, selective and fast ultra-high performance liquid chromatography tandem mass spectrometry method for the simultaneous analysis of 33 basic drugs in hair (amphetamines, cocaine, opiates, opioids and metabolites). J Chromatogr B Analyt Technol Biomed Life Sci 965:7–18

    Article  PubMed  CAS  Google Scholar 

  • Gardana C, Canzi E, Simonetti P (2014) R(-)-O-desmethylangolensin is the main enantiomeric form of daidzein metabolite produced by human in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 953–954:30–37

    Article  PubMed  CAS  Google Scholar 

  • Gartland KP, Beddell CR, Lindon JC, Nicholson JK (1991) Application of pattern recognition methods to the analysis and classification of toxicological data derived from proton nuclear magnetic resonance spectroscopy of urine. Mol Pharmacol 39:629–642

    CAS  PubMed  Google Scholar 

  • Ghauri FY, Parkes HG, Nicholson JK, Wilson ID, Brenton DP (1993) Asymptomatic 5-oxoprolinuria detected by proton magnetic resonance spectroscopy. Clin Chem 39:1341

    CAS  PubMed  Google Scholar 

  • Goncalves MS (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  CAS  PubMed  Google Scholar 

  • Goodhew PJ, Humphreys J, Beanland R (2000) Electron microscopy and analysis. CRC Press, Boca Raton

    Google Scholar 

  • Gradinaru J, Vullioud A, Eap CB, Ansermot N (2014) Quantification of typical antipsychotics in human plasma by ultra-high performance liquid chromatography tandem mass spectrometry for therapeutic drug monitoring. J Pharm Biomed Anal 88:36–44

    Article  CAS  PubMed  Google Scholar 

  • Greenfield N, Davidson B, Fasman GD (1967) The use of computed optical rotatory dispersion curves for the evaluation of protein conformation. Biochemistry 6:1630–1637

    Article  CAS  PubMed  Google Scholar 

  • Guillarme D, Ruta J, Rudaz S, Veuthey JL (2010) New trends in fast and high-resolution liquid chromatography: a critical comparison of existing approaches. Anal Bioanal Chem 397:1069–1082

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Park S, Yoon J, Shin I (2014) Recent progress in the development of near-infrared fluorescent probes for bioimaging applications. Chem Soc Rev 43:16–29

    Article  PubMed  Google Scholar 

  • Hageman JA, Hendriks MM, Westerhuis JA, Van Der Werf MJ, Berger R, Smilde AK (2008) Simplivariate models: Ideas and first examples. PloS one 3:e3259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Halligan S, Byard SJ, Spencer AJ, Gray TJ, Harpur ES, Bonner FW (1995) A study of the nephrotoxicity of three cephalosporins in rabbits using 1H NMR spectroscopy. Toxicol Lett 81:15–21

    Article  CAS  PubMed  Google Scholar 

  • Hans KMC, Müller S, Sigrist MW (2012) Infrared attenuated total reflection (IR-ATR) spectroscopy for detecting drugs in human saliva. Drug Test Anal 4:420–429

    Article  CAS  PubMed  Google Scholar 

  • Harada I, Takeuchi H (1986) Raman and ultraviolet resonance Raman spectra of proteins and related compounds. Adv Infrared Raman Spectrosc 13:113–175

    CAS  Google Scholar 

  • Hartauer KJ, Miller ES, Guillory JK (1992) Diffuse reflectance infrared Fourier transform spectroscopy for the quantitative analysis of mixtures of polymorphs. Int J Pharm 85:163–174

    Article  CAS  Google Scholar 

  • Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, Enejder A (2007) Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. Proc Natl Acad Sci U S A 104:14658–14663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hendra P, Jones C, Warnes G (1991) Fourier transform Raman spectroscopy: instrumentation and chemical applications. Ellis Horwood, Chichester

    Google Scholar 

  • Hendriks MM, FaV Eeuwijk, Jellema RH, Westerhuis JA, Reijmers TH, Hoefsloot HC, Smilde AK (2011) Data-processing strategies for metabolomics studies. TrAC Trends Anal Chem 30:1685–1698

    Article  CAS  Google Scholar 

  • Hennessey JP Jr, Johnson WC Jr (1981) Information content in the circular dichroism of proteins. Biochemistry 20:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Hennessey JP Jr, Johnson WC Jr (1982) Experimental errors and their effect on analyzing circular dichroism spectra of proteins. Anal Biochem 125:177–188

    Article  CAS  PubMed  Google Scholar 

  • Hiemke C, Baumann P, Bergemann N, Conca A, Dietmaier O, Egberts K, Fric M, Gerlach M, Greiner C, Grunder G, Haen E, Havemann-Reinecke U, Jaquenoud Sirot E, Kirchherr H, Laux G, Lutz UC, Messer T, Muller MJ, Pfuhlmann B, Rambeck B, Riederer P, Schoppek B, Stingl J, Uhr M, Ulrich S, Waschgler R, Zernig G (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235

    Article  PubMed  Google Scholar 

  • Holcapek M, Kolarova L, Nobilis M (2008) High-performance liquid chromatography-tandem mass spectrometry in the identification and determination of phase I and phase II drug metabolites. Anal Bioanal Chem 391:59–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes E, Bonner FW, Sweatman BC, Lindon JC, Beddell CR, Rahr E, Nicholson JK (1992) Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury(II) chloride and 2-bromoethanamine. Mol Pharmacol 42:922–930

    CAS  PubMed  Google Scholar 

  • Holmes E, Loo RL, Cloarec O, Coen M, Tang H, Maibaum E, Bruce S, Chan Q, Elliott P, Stamler J, Wilson ID, Lindon JC, Nicholson JK (2007) Detection of urinary drug metabolite (xenometabolome) signatures in molecular epidemiology studies via statistical total correlation (NMR) spectroscopy. Anal Chem 79:2629–2640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höskuldson A (1988) PLS regression and statistical models. Scand J Stat 17:97–114

    Google Scholar 

  • Höskuldsson A (1988) PLS regression methods. J Chemom 2:211–228

    Google Scholar 

  • Iloro I, Gonzalez E, Gutierrez-De Juan V, Mato JM, Falcon-Perez JM, Elortza F (2013) Non-invasive detection of drug toxicity in rats by solid-phase extraction and MALDI-TOF analysis of urine samples. Anal Bioanal Chem 405:2311–2320

    Article  CAS  PubMed  Google Scholar 

  • Jansen JJ, Hoefsloot HC, Van Der Greef J, Timmerman ME, Smilde AK (2005) Multilevel component analysis of time-resolved metabolic fingerprinting data. Anal Chim Acta 530:173–183

    Article  CAS  Google Scholar 

  • Jaworska A, Wietecha-Posluszny R, Wozniakiewicz M, Koscielniak P, Malek K (2011) Evaluation of the potential of surface enhancement Raman spectroscopy for detection of tricyclic psychotropic drugs. Case studies on imipramine and its metabolite. Analyst 136:4704–4709

    Article  CAS  PubMed  Google Scholar 

  • Jiao RH, Xu S, Liu JY, Ge HM, Ding H, Xu C, Zhu HL, Tan RX (2006) Chaetominine, a cytotoxic alkaloid produced by endophytic Chaetomium sp. IFB-E015. Org Lett 8:5709–5712

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe IT (1990) Principal component analysis: a beginner’s guide—I. Introduction and application. Weather 45:375–382

    Google Scholar 

  • Jonsson U, Fagerstam L, Ivarsson B, Johnsson B, Karlsson R, Lundh K, Lofas S, Persson B, Roos H, Ronnberg I et al (1991) Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11:620–627

    CAS  PubMed  Google Scholar 

  • Joshi BD, Srivastava A, Honorato SB, Tandon P, Pessoa OD, Fechine PB, Ayala AP (2013) Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations. Spectrochim Acta A Mol Biomol Spectrosc 113:367–377

    Article  CAS  PubMed  Google Scholar 

  • Jupin M, Michiels P, Girard F, Spraul M, Wijmenga S (2014) NMR metabolomics profiling of blood plasma mimics shows that medium-and long-chain fatty acids differently release metabolites from human serum albumin. J Magn Reson 239:34–43

    Article  CAS  PubMed  Google Scholar 

  • Jurs PC (1986) Pattern recognition used to investigate multivariate data in analytical chemistry. Science 232:1219–1224

    Article  CAS  PubMed  Google Scholar 

  • Kakuta H, Kurosaki E, Niimi T, Gato K, Kawasaki Y, Suwa A, Honbou K, Yamaguchi T, Okumura H, Sanagi M (2014) Distinct properties of telmisartan on agonistic activities for peroxisome proliferator- activated receptor γ among clinically used angiotensin II receptor blockers: Drug-target interaction analyses. J Pharmacol Exp Ther 349:10–20

    Article  PubMed  CAS  Google Scholar 

  • Kang KA, Kim YW, Kim SU, Chae S, Koh YS, Kim HS, Choo MK, Kim DH, Hyun JW (2005) G1 phase arrest of the cell cycle by a ginseng metabolite, compound K, in U937 human monocytic leukamia cells. Arch Pharm Res 28:685–690

    Article  CAS  PubMed  Google Scholar 

  • Khatib-Shahidi S, Andersson M, Herman JL, Gillespie TA, Caprioli RM (2006) Direct molecular analysis of whole-body animal tissue sections by imaging MALDI mass spectrometry. Anal Chem 78:6448–6456

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Han J (2014) Chiroptical study and absolute configuration of (-)-O-DMA produced from Daidzein Metabolism. Chirality 26:74–77

    Article  CAS  Google Scholar 

  • Kirchner N (1993) Ion processing: control and analysis. US Patent No. 5,206,506., U.S.

  • Korfmacher WA (2004) Using mass spectrometry for drug metabolism studies. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kostiainen R, Kotiaho T, Kuuranne T, Auriola S (2003) Liquid chromatography/atmospheric pressure ionization-mass spectrometry in drug metabolism studies. J Mass Spectrom 38:357–372

    Article  CAS  PubMed  Google Scholar 

  • Krähmer A, Gudi G, Weiher N, Gierus M, Schütze W, Schulz H (2013) Characterization and quantification of secondary metabolite profiles in leaves of red and white clover species by NIR and ATR-IR spectroscopy. Vib Spectrosc 68:96–103

    Article  CAS  Google Scholar 

  • Kratzsch C, Peters FT, Kraemer T, Weber AA, Maurer HH (2003) Screening, library-assisted identification and validated quantification of fifteen neuroleptics and three of their metabolites in plasma by liquid chromatography/mass spectrometry with atmospheric pressure chemical ionization. J Mass Spectrom 38:283–295

    Article  CAS  PubMed  Google Scholar 

  • Krishnan P, Kruger N (2005) Ratcliffe 2005. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255–265

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto K, Nagao T, Ogihara T (2013) A new high-throughput analysis for drug metabolism profiling using liquid chromatography coupled with tandem mass spectrometry. Drug Res (Stuttg) 63:171–176

    Article  CAS  Google Scholar 

  • Kyle AH, Baker JH, Gandolfo MJ, Reinsberg SA, Minchinton AI (2014) Tissue penetration and activity of Camptothecins in solid tumor xenografts. Mol Cancer Ther 13:2727–2737

    Article  CAS  PubMed  Google Scholar 

  • Lämmerhofer M, Weckwerth W (2013) Metabolomics in practice: successful strategies to generate and analyze metabolic data. Wiley, Hoboken

    Book  Google Scholar 

  • Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y, Maciejewski A, Arndt D, Wilson M, Neveu V (2014) Drugbank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42:D1091–D1097

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Bowen BP, Northen TR (2010) Mass spectrometry-based metabolomics, analysis of metabolite-protein interactions, and imaging. Biotechniques 49:557–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenz EM (2011) Nuclear magnetic resonance (NMR)-based drug metabolite profiling. Methods Mol Biol 708:299–319

    Article  CAS  PubMed  Google Scholar 

  • Liang Y-S, Kim H, Lefeber A, Erkelens C, Choi Y, Verpoorte R (2006) Identification of phenylpropanoids in methyl jasmonate treated Brassica rapa leaves using two-dimensional nuclear magnetic resonance spectroscopy. J Chromatogr A 1112:148–155

    Article  CAS  PubMed  Google Scholar 

  • Liesener A, Karst U (2005) Monitoring enzymatic conversions by mass spectrometry: a critical review. Anal Bioanal Chem 382:1451–1464

    Article  CAS  PubMed  Google Scholar 

  • Lindon J, Holmes E, Nicholson J (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 39:1–40

    Article  CAS  Google Scholar 

  • Luthi G, Blangy V, Eap CB, Ansermot N (2013) Buprenorphine and norbuprenorphine quantification in human plasma by simple protein precipitation and ultra-high performance liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 77:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lynch MJ, Nicholson JK (1997) Proton MRS of human prostatic fluid: correlations between citrate, spermine, and myo-inositol levels and changes with disease. Prostate 30:248–255

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Chowdhury SK, Alton KB (2006) Application of mass spectrometry for metabolite identification. Curr Drug Metab 7:503–523

    Article  CAS  PubMed  Google Scholar 

  • Mahlke NS, Ziesenitz V, Mikus G, Skopp G (2014) Quantitative low-volume assay for simultaneous determination of fentanyl, norfentanyl, and minor metabolites in human plasma and urine by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Int J Legal Med 128:771–778

    Article  PubMed  Google Scholar 

  • Mamian-Lopez MB, Poppi RJ (2013) Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal Chim Acta 760:53–59

    Article  CAS  PubMed  Google Scholar 

  • Manly BF (2004) Multivariate statistical methods: a primer. CRC Press, Boca Raton

    Book  Google Scholar 

  • Manning MC (1989) Underlying assumptions in the estimation of secondary structure content in proteins by circular dichroism spectroscopy—a critical review. J Pharm Biomed Anal 7:1103–1119

    Article  CAS  PubMed  Google Scholar 

  • Manor D, Weng G, Deng H, Cosloy S, Chen CX, Balogh-Nair V, Delaria K, Jurnak F, Callender R (1991) An isotope edited classical Raman difference spectroscopic study of the interactions of guanine nucleotides with elongation factor Tu and H-ras p21. Biochemistry 30:10914–10920

    Article  CAS  PubMed  Google Scholar 

  • Marinach C, Alanio A, Palous M, Kwasek S, Fekkar A, Brossas JY, Brun S, Snounou G, Hennequin C, Sanglard D, Datry A, Golmard JL, Mazier D (2009) MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole. Proteomics 9:4627–4631

    Article  CAS  PubMed  Google Scholar 

  • Mark H, Ritchie GE, Roller RW, Ciurczak EW, Tso C, Macdonald SA (2002) Validation of a near-infrared transmission spectroscopic procedure, part A: validation protocols. J Pharm Biomed Anal 28:251–260

    Article  CAS  PubMed  Google Scholar 

  • Massart D, Vandeginste B, Buydens L, De Jong S, Lewi P, Smeyers-Verbeke J, Mann CK (1998) Handbook of chemometrics and qualimetrics: part A. Appl Spectrosc 52:302A

    Article  Google Scholar 

  • Matsuo T (1994) Biological mass spectrometry: present and future. Wiley, Hoboken

    Google Scholar 

  • Mcconeghy KW, Liao S, Clark D, Worboys P, Barriere SL, Rodvold KA (2014) Variability in telavancin cross-reactivity among vancomycin immunoassays. Antimicrob Agents Chemother 58(12):7093–7097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mercolini L, Grillo M, Bartoletti C, Boncompagni G, Raggi MA (2007) Simultaneous analysis of classical neuroleptics, atypical antipsychotics and their metabolites in human plasma. Anal Bioanal Chem 388:235–243

    Article  CAS  PubMed  Google Scholar 

  • Munoz EM, Lorenzo-Abalde S, Gonzalez-Fernandez A, Quintela O, Lopez-Rivadulla M, Riguera R (2011) Direct surface plasmon resonance immunosensor for in situ detection of benzoylecgonine, the major cocaine metabolite. Biosens Bioelectron 26:4423–4428

    Article  CAS  PubMed  Google Scholar 

  • Mutlib AE, Strupczewski JT (1995) Picogram determination of iloperidone in human plasma by solidphase extraction and by high-performance liquid chromatography-selected-ion monitoring electrospray mass spectrometry. J Chromatogr B Biomed Appl 669:237–246

    Article  CAS  PubMed  Google Scholar 

  • Mutlib AE, Strupczewski JT, Chesson SM (1995) Application of hyphenated LC/NMR and LC/MS techniques in rapid identification of in vitro and in vivo metabolites of iloperidone. Drug Metab Dispos 23:951–964

    CAS  PubMed  Google Scholar 

  • Myszka DG (1997) Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors. Curr Opin Biotechnol 8:50–57

    Article  CAS  PubMed  Google Scholar 

  • Nan X, Tonary AM, Stolow A, Xie XS, Pezacki JP (2006) Intracellular imaging of HCV RNA and cellular lipids by using simultaneous two-photon fluorescence and coherent anti-Stokes Raman scattering microscopies. Chembiochem 7:1895–1897

    Article  CAS  PubMed  Google Scholar 

  • Nelson SD (1982) Metabolic activation and drug toxicity. J Med Chem 25:753–765

    Article  CAS  PubMed  Google Scholar 

  • Nicholson JK, Wilson ID (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. Prog Nucl Magn Reson Spectrosc 21:449–501

    Article  CAS  Google Scholar 

  • Nicholson JK, Buckingham MJ, Sadler PJ (1983) High resolution 1H n.m.r. studies of vertebrate blood and plasma. Biochem. J. 211:605–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, O’flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH (1984) Proton-nuclearmagnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J 217:365–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholson JK, Timbrell JA, Sadler PJ (1985) Proton NMR spectra of urine as indicators of renal damage. Mercury-induced nephrotoxicity in rats. Mol Pharmacol 27:644–651

    CAS  PubMed  Google Scholar 

  • Nobilis M, Mikušek J, Szotáková B, Jirásko R, Holčapek M, Chamseddin C, Jira T, Kučera R, Kuneš J, Pour M (2013) Analytical power of LLE–HPLC–PDA–MS/MS in drug metabolism studies: Identification of new nabumetone metabolites. J Pharm Biomed Anal 80:164–172

    Article  CAS  PubMed  Google Scholar 

  • Notari S, Mancone C, Tripodi M, Narciso P, Fasano M, Ascenzi P (2006) Determination of anti-HIV drug concentration in human plasma by MALDI-TOF/TOF. J Chromatogr B Analyt Technol Biomed Life Sci 833:109–116

    Article  CAS  PubMed  Google Scholar 

  • Oberacher H, Schubert B, Libiseller K, Schweissgut A (2013) Detection and identification of drugs and toxicants in human body fluids by liquid chromatography-tandem mass spectrometry under data-dependent acquisition control and automated database search. Anal Chim Acta 770:121–131

    Article  CAS  PubMed  Google Scholar 

  • Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park MH, Igarashi K (2013) Polyamines and their metabolites as diagnostic markers of human diseases. Biomol Ther (Seoul) 21:1–9

    Article  CAS  Google Scholar 

  • Pastore A, Salvadori S, Temussi PA (2007) Peptides and proteins in a confined environment: NMR spectra at natural isotopic abundance. J Pept Sci 13:342–347

    Article  CAS  PubMed  Google Scholar 

  • Pearson K (1901) Principal components analysis. Lond Edinb Dubl Phil Mag J Sci 6:559

    Article  Google Scholar 

  • Pistolozzi M, Bertucci C (2008) Species-dependent stereoselective drug binding to albumin: A circular dichroism study. Chirality 20:552–558

    Article  CAS  PubMed  Google Scholar 

  • Provencher SW, Gloeckner J (1981) Estimation of globular protein secondary structure from circular dichroism. Biochemistry 20:33–37

    Article  CAS  PubMed  Google Scholar 

  • Rakic B, Sagan SM, Noestheden M, Belanger S, Nan X, Evans CL, Xie XS, Pezacki JP (2006) Peroxisome proliferator-activated receptor alpha antagonism inhibits hepatitis C virus replication. Chem Biol 13:23–30

    Article  CAS  PubMed  Google Scholar 

  • Ravina E, Kubinyi H (2011) The evolution of drug discovery: from traditional medicines to modern drugs. Wiley, Hoboken

    Google Scholar 

  • Reed SJB (2005) Electron microprobe analysis and scanning electron microscopy in geology. University Press Cambridge, Cambridge

    Book  Google Scholar 

  • Reimer L (1998) Scanning electron microscopy: physics of image formation and microanalysis. Springer Ser Optical Sci 45:69–81

    Google Scholar 

  • Ritchie GE, Roller RW, Ciurczak EW, Mark H, Tso C, Macdonald SA (2002) Validation of a near-infrared transmission spectroscopic procedure. Part B: application to alternate content uniformity and release assay methods for pharmaceutical solid dosage forms. J Pharm Biomed Anal 29:159–171

    Article  CAS  PubMed  Google Scholar 

  • Robichaud G, Barry JA, Garrard KP, Muddiman DC (2013) Infrared matrix-assisted laser desorption electrospray ionization (IR-MALDESI) imaging source coupled to a FT-ICR mass spectrometer. J Am Soc Mass Spectrom 24:92–100

    Article  CAS  PubMed  Google Scholar 

  • Roskar R, Lušin TT (2012) Analytical methods for quantification of drug metabolites in biological samples. InTech, Rijeka

    Book  Google Scholar 

  • Sachse J, Koller J, Hartter S, Hiemke C (2006) Automated analysis of quetiapine and other antipsychotic drugs in human blood by high performance-liquid chromatography with column-switching and spectrophotometric detection. J Chromatogr B Analyt Technol Biomed Life Sci 830:342–348

    Article  CAS  PubMed  Google Scholar 

  • Sampson JS, Hawkridge AM, Muddiman DC (2006) Generation and detection of multiply-charged peptides and proteins by matrix-assisted laser desorption electrospray ionization (MALDESI) Fourier transform ion cyclotron resonance mass spectrometry. J Am Soc Mass Spectrom 17:1712–1716

    Article  CAS  PubMed  Google Scholar 

  • Sands CJ, Coen M, Maher AD, Ebbels TM, Holmes E, Lindon JC, Nicholson JK (2009) Statistical total correlation spectroscopy editing of 1H NMR spectra of biofluids: application to drug metabolite profile identification and enhanced information recovery. Anal Chem 81:6458–6466

    Article  CAS  PubMed  Google Scholar 

  • Schäfer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21:754–764

    Article  PubMed  Google Scholar 

  • Searle SR (2012) Linear models, John Wiley & Sons. Semmar N, Canlet C, Delplanque B, Ruyet P, Paris A, Jean-Charles M (2014) Review and research on feature selection methods from nmr data in biological fluids: presentation of an original ensemble method applied to atherosclerosis field. Curr Drug Metab 15:544–556

    Google Scholar 

  • Sengupta P, Krimm S (1987) Raman and normal-mode studies of the extended-helix conformation in polypeptide chains. Biopolymers 26:S99–S107

    Article  PubMed  Google Scholar 

  • Shanta SR, Kim YH (2011) Review: application of maldi tissue imaging of drugs and metabolites: a new frontier for molecular histology. Biomol Thera 19:149–154

    Article  CAS  Google Scholar 

  • Sheehan JJ, Sliwa JK, Amatniek JC, Grinspan A, Canuso CM (2010) Atypical antipsychotic metabolism and excretion. Curr Drug Metab 11:516–525

    Article  CAS  PubMed  Google Scholar 

  • Shen Q, Wang L, Zhou H, Jiang H-D, Yu L-S, Zeng S (2013) Stereoselective binding of chiral drugs to plasma proteins. Acta Pharmacol Sin 34:998–1006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Z, Zhang G, Zhao L, Wang S, Kano Y, Yuan D (2014) Excretion of tectorigenin in rat urine orally administrated at different dosages by ultra-performance liquid chromatography coupled to quadrupole timeof-flight mass spectrometry. Eur J Drug Metab Pharmacokinet 40:255–266

    Article  PubMed  CAS  Google Scholar 

  • Siamwiza MN, Lord RC, Chen MC, Takamatsu T, Harada I, Matsuura H, Shimanouchi T (1975) Interpretation of the doublet at 850 and 830 cm-1 in the Raman spectra of tyrosyl residues in proteins and certain model compounds. Biochemistry 14:4870–4876

    Article  CAS  PubMed  Google Scholar 

  • Siebinga I, Vrensen GF, Otto K, Puppels GJ, De Mul FF, Greve J (1992) Ageing and changes in protein conformation in the human lens: a Raman microspectroscopic study. Exp Eye Res 54:759–767

    Article  CAS  PubMed  Google Scholar 

  • Simmler C, Napolitano JG, Mcalpine JB, Chen S-N, Pauli GF (2014) Universal quantitative NMR analysis of complex natural samples. Curr Opin Biotechnol 25:51–59

    Article  CAS  PubMed  Google Scholar 

  • Skoog DA, Leary JJ (1992) Principles of Instrumental Analysis. Saunders College Publishing, Philadelphia

    Google Scholar 

  • Smilde A, Westerhuis J, Hoefsloot H, Bijlsma S, Rubingh C, Vis D, Jellema R, Pijl H, Roelfsema F, Van Der Greef J (2010) Dynamic metabolomic data analysis: a tutorial review. Metabolomics 6:3–17

    Article  CAS  PubMed  Google Scholar 

  • Spraul M, Hofmann M, Lindon JC, Farrant RD, Seddon MJ, Nicholson JK, Wilson ID (1994) Evaluation of liquid chromatography coupled with high-field 1H NMR spectroscopy for drug metabolite detection and characterization: the identification of paracetamol metabolites in urine and bile. NMR Biomed 7:295–303

    Article  CAS  PubMed  Google Scholar 

  • Stone J (2010) Broad spectrum drug screening using electron-ionization gas chromatography-mass spectrometry (EI-GCMS). Methods Mol Biol 603:187–202

    Article  CAS  PubMed  Google Scholar 

  • Stroh JG, Petucci CJ, Brecker SJ, Huang N, Lau JM (2007) Automated sub-ppm mass accuracy on an ESI-TOF for use with drug discovery compound libraries. J Am Soc Mass Spectrom 18:1612–1616

    Article  CAS  PubMed  Google Scholar 

  • Su AK, Liu JT, Lin CH (2005) Rapid drug-screening of clandestine tablets by MALDI-TOF mass spectrometry. Talanta 67:718–724

    Article  CAS  PubMed  Google Scholar 

  • Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061

    CAS  PubMed  Google Scholar 

  • Sugeta H (1975) Normal vibrations and molecular conformations of dialkyl disulfides. Spectrochim Acta Part A: Mol Spectrosc 31:1729–1737

    Article  Google Scholar 

  • Sugiura Y, Setou M (2010) Imaging mass spectrometry for visualization of drug and endogenous metabolite distribution: toward in situ pharmacometabolomes. J Neuroimmune Pharmacol 5:31–43

    Article  PubMed  Google Scholar 

  • Taglauer E, Vickerman JC (1997) Surface analysis-the principle techniques. Wiley, Chichester

    Google Scholar 

  • Trim PJ, Francese S, Clench MR (2009) Imaging mass spectrometry for the assessment of drugs and metabolites in tissue. Bioanalysis 1:309–319

    Article  CAS  PubMed  Google Scholar 

  • Tugarinov V, Hwang PM, Kay LE (2004) Nuclear magnetic resonance spectroscopy of high-molecularweight proteins. Annu Rev Biochem 73:107–146

    Article  CAS  PubMed  Google Scholar 

  • Valafar F (2002) Pattern recognition techniques in microarray data analysis. Ann New York Acade Sci 980:41–64

    Article  CAS  Google Scholar 

  • Van Batenburg MF, Coulier L, Van Eeuwijk F, Smilde AK, Westerhuis JA (2011) New figures of merit for comprehensive functional genomics data: the metabolomics case. Anal Chem 83:3267–3274

    Article  PubMed  CAS  Google Scholar 

  • Van Mechelen I, Smilde AK (2011) Comparability problems in the analysis of multiway data. Chemom Intell Lab Syst 106:2–11

    Article  CAS  Google Scholar 

  • Visser NF, Heck AJ (2008) Surface plasmon resonance mass spectrometry in proteomics. Expert Rev Proteomics 5:425–433

    Article  CAS  PubMed  Google Scholar 

  • Weaver EM, Hummon AB (2013) Imaging mass spectrometry: from tissue sections to cell cultures. Adv Drug Deliv Rev 65:1039–1055

    Article  CAS  PubMed  Google Scholar 

  • Weiss-Lopez B, Goodrow M, Musker W, Nash C (1986) Conformational dependence of the disulfide stretching frequency in cyclic model compounds. J Am Chem Soc 108:1271–1274

    Article  CAS  Google Scholar 

  • Wentzell PD, Andrews DT, Hamilton DC, Faber K, Kowalski BR (1997) Maximum likelihood principal component analysis. J Chemom 11:339–366

    Article  CAS  Google Scholar 

  • Wille SM, Van Hee P, Neels HM, Van Peteghem CH, Lambert WE (2007) Comparison of electron and chemical ionization modes by validation of a quantitative gas chromatographic-mass spectrometric assay of new generation antidepressants and their active metabolites in plasma. J Chromatogr A 1176:236–245

    Article  CAS  PubMed  Google Scholar 

  • Wille SM, De Letter EA, Piette MH, Van Overschelde LK, Van Peteghem CH, Lambert WE (2009) Determination of antidepressants in human postmortem blood, brain tissue, and hair using gas chromatography-mass spectrometry. Int J Legal Med 123:451–458

    Article  PubMed  Google Scholar 

  • William Allwood J, Ellis DI, Heald JK, Goodacre R, Mur LA (2006) Metabolomic approaches reveal that phosphatidic and phosphatidyl glycerol phospholipids are major discriminatory non-polar metabolites in responses by Brachypodium distachyon to challenge by Magnaporthe grisea. Plant J 46:351–368

    Article  PubMed  CAS  Google Scholar 

  • Winkle RF, Nagy JM, Cass AE, Sharma S (2008) Towards microfluidic technology-based MALDI-MS platforms for drug discovery: a review. Expert Opin Drug Discov 3:1281–1292

    Article  CAS  PubMed  Google Scholar 

  • Wiseman JM, Ifa DR, Zhu Y, Kissinger CB, Manicke NE, Kissinger PT, Cooks RG (2008) Desorption electrospray ionization mass spectrometry: imaging drugs and metabolites in tissues. Proc Nat Acad Sci 105:18120–18125

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright P, Miao Z, Shilliday B (2009) Metabolite quantitation: detector technology and MIST implications. Bioanalysis 1:831–845

    Article  CAS  PubMed  Google Scholar 

  • Xie XS, Yu J, Yang WY (2006) Living cells as test tubes. Science 312:228–230

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Di L, Kerns E, Li SQ, Alden P, Plumb RS (2007) Ultra-performance liquid chromatography/tandem mass spectrometric quantification of structurally diverse drug mixtures using an ESI-APCI multimode ionization source. Rapid Commun Mass Spectrom 21:893–902

    Article  CAS  PubMed  Google Scholar 

  • Yuk JS, Ha KS (2005) Proteomic applications of surface plasmon resonance biosensors: analysis of protein arrays. Exp Mol Med 37:1–10

    Article  CAS  PubMed  Google Scholar 

  • Zhang MY, Pace N, Kerns EH, Kleintop T, Kagan N, Sakuma T (2005) Hybrid triple quadrupole-linear ion trap mass spectrometry in fragmentation mechanism studies: application to structure elucidation of buspirone and one of its metabolites. J Mass Spectrom 40:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Long Y, He W, Hao X, Liu J (2014) Application status of MALDI-TOF mass spectrometry in the identification and drug resistance of Mycobacterium tuberculosis. J Thorac Dis 6:512–516

    PubMed  PubMed Central  Google Scholar 

  • Zhou BP, Zhang HM, Li XH, Yuan J, Li W, Xu LM, Wang HS, Chen XC, Ding CM (2008) High throughput detection of drug-resistance gene mutations in HBV using MALDI-TOF mass spectrometry. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 22:351–353

    CAS  PubMed  Google Scholar 

  • Zhou DH, Shah G, Mullen C, Sandoz D, Rienstra CM (2009) Proton-detected solid-state NMR spectroscopy of natural-abundance peptide and protein pharmaceuticals. Angew Chem Int Ed Engl 48:1253–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  PubMed  Google Scholar 

  • Zhu Q, Zhang J, Yang P, Tan B, Liu X, Zheng Y, Cai W, Zhu Y (2014) Characterization of metabolites of leonurine (scm-198) in rats after oral administration by liquid chromatography/tandem mass spectrometry and NMR spectrometry. Sci World J 3:947946

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by Grants provided by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2017R1D1A1B03030723), the Industrial Core Technology Development Program (10067427), funded by the Ministry of Trade, Industry and Energy (MOTIE), High Value-added Food Technology Development Program, Ministry of Agriculture, Food and Rural Affairs (MAFRA), Republic of Korea (316058-3, 315063-3), the Functional Districts of the Science Belt support program, Ministry of Science, ICT and Future Planning, Republic of Korea (2017K000017) and the Ewha Womans University Research Grant of 2017 and 2018. This study also partly supported by the GRRC program of Gyeonggi province (GRRC-CHA2017-A01, Discovery and Analysis of Regional Specialized Resources and Operation of Regional Research Service Center).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Kyu Rhee or Woo Sung Son.

Ethics declarations

Conflict of Interest

The authors confirm that this article content has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, JJ., Park, K., Kim, WJ. et al. Spectroscopic methods to analyze drug metabolites. Arch. Pharm. Res. 41, 355–371 (2018). https://doi.org/10.1007/s12272-018-1010-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1010-x

Keywords

Navigation