Skip to main content
Log in

Simvastatin reduces adrenal catecholamine secretion evoked by stimulation of cholinergic nicotinic and angiotensinergic AT1 receptors

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

We investigated the influence of simvastatin, a statin, on the secretion of catecholamines (CA) in rat adrenal glands, and clarified its action mechanism. Simvastatin suppressed acetylcholine (ACh)-evoked CA release in a dose- and time-dependent fashion. In the presence of simvastatin, CA secretion evoked by 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP), angiotensin II, high K+, veratridine, and Bay-K-8644 was time-dependently inhibited. However, in the simultaneous presence of simvastatin and Nω-nitro-l-arginine methyl ester hydrochloride, CA secretion evoked by angiotensin II and DMPP recovered to control levels. Adrenal NO release was increased by simvastatin-treatment. Simvastatin-inhibited CA secretion was not affected by treatment with mevalonate. Pravastatin did not influence ACh-evoked CA secretion, while atorvastatin reduced it. In the simultaneous presence of simvastatin and fimasartan, ACh-induced CA release was markedly reduced compared to that of fimasartan-treatment alone. We present the first evidence that simvastatin reduces adrenal CA secretion induced by stimulation of nicotinic and AT1-receptors. Simvastatin-induced inhibition seems to involve reducing the influx of both Ca2+ and Na+ into adrenochromaffin cells, partly via the elevation of NO production by NO synthase activation, without inhibition of 3-hydroxy-methylglutaryl coenzyme A reductase. Co-administration of simvastatin and fimasartan may be clinically helpful for the treatment of cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anton AH, Sayre DF (1962) A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138:360–375

    CAS  PubMed  Google Scholar 

  • Azizi M, Guyene TT, Chatellier G, Wargon M, Ménard J (1997) Additive effects of losartan and enalapril on blood pressure and plasma active renin. Hypertension 29:634–640

    Article  CAS  PubMed  Google Scholar 

  • Bergdahl A, Persson E, Hellstrand P, Swärd K (2003) Lovastatin induces relaxation and inhibits L-type Ca2+ current in the rat basilar artery. Pharmacol Toxicol 93:128–134

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Rivero J, de las Heras N, Martín-Fernández B, Cachofeiro V, Lahera V, Balfagón G (2011) Rosuvastatin restored adrenergic and nitrergic function in mesenteric arteries from obese rats. Br J Pharmacol 162:271–285

  • Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traystman RJ (1992) Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. Eur J Pharmacol 210:105–106

    Article  CAS  PubMed  Google Scholar 

  • Breslow MJ, Tobin JR, Bredt DS, Ferris CD, Snyder SH, Traystman RJ (1993) Nitric oxide as a regulator of adrenal blood flow. Am J Physiol 264:H464–H469

    Article  CAS  PubMed  Google Scholar 

  • Burgoyne RD (1984) Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779:201–216

    CAS  PubMed  Google Scholar 

  • Chen Y, Zhang H, Liu H, Cao A (2016) Mechanisms of simvastatin-induced vasodilatation of rat superior mesenteric arteries. Biomed Rep 5:491–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Cho KI, Cha TJ, Lee SJ, Shim IK, Zhang YH, Heo JH, Kim HS, Kim SJ, Kim KL, Lee JW (2014) Attenuation of acetylcholine activated potassium current (I KACh) by simvastatin, not pravastatin in mouse atrial cardiomyocyte: possible atrial fibrillation preventing effects of statin. PLoS ONE 9:e106570

    Article  PubMed  PubMed Central  Google Scholar 

  • De Sotomayor M, Alvarez Herrera MD, Marhuenda E, Andriantsitohaina R (2000) Characterization of endothelial factors involved in the vasodilatory effect of simvastatin in aorta and small mesenteric artery of the rat. Br J Pharmacol 131:1179–1187

    Article  Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concept and clues from chromaffin and other cells. Br J Pharmacol 34:451–474

    Article  CAS  PubMed  Google Scholar 

  • Endo A (1992) The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 33:1569–1582

    CAS  PubMed  Google Scholar 

  • Escobales N, Crespo MJ, Altieri PI, Furilla RA (1996) Inhibition of smooth muscle cell calcium mobilization and aortic ring contraction by lactone vastatins. J Hypertens 14:115–121

    Article  CAS  PubMed  Google Scholar 

  • Fisher SK, Holz RW, Agranoff BW (1981) Muscarinic receptors in chromaffin cell culture mediate enhanced phospholipid labeling but not catecholamine secretion. J Neurochem 37:491–4870

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto Y, Libby P, Rabkin E, Hill CC, Enomoto M, Hirouchi Y, Shiomi M, Aikawa M (2001) Statins alter smooth muscle cell accumulation and collagen content in established atheroma of Watanabe heritable hyperlipidemic rabbits. Circulation 103:993–999

    Article  CAS  PubMed  Google Scholar 

  • Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L (1984) Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309:69–71

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1984) Progress in understanding the LDL receptor and HMG-CoA reductase, two membrane proteins that regulate the plasma cholesterol. J Lipid Res 25:1450–1461

    CAS  PubMed  Google Scholar 

  • Gryn SE, Hegele RA (2015) Ezetimibe plus simvastatin for the treatment of hypercholesterolemia. Expert Opin Pharmacother 16:1255–1262

    Article  CAS  PubMed  Google Scholar 

  • Hano T, Mizukoshi M, Baba A, Nakamura N, Nishio I (1994) Angiotensin II subtype 1 receptor modulates epinephrine release from isolated rat adrenal gland. Blood Press 5:S105–S108

    Google Scholar 

  • Jiang JL, Jiang DJ, Tang YH, Li NS, Deng HW, Li YJ (2004) Effect of simvastatin on endothelium-dependent vaso-relaxation and endogenous nitric oxide synthase inhibitor. Acta Pharmacol Sin 25:893–901

    CAS  PubMed  Google Scholar 

  • Kilpatrick DL, Slepetis RJ, Corcoran JJ, Kirshner N (1982) Calcium uptake and catecholamine secretion by cultured bovine adrenal medulla cells. J Neurochem 38:427–435

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Lee JH, Paik SH, Kim JH, Chi YH (2012) Fimasartan, a novel angiotensin II receptor antagonist. Arch Pharm Res 35:1123–1126

    Article  CAS  PubMed  Google Scholar 

  • Kjekshus J, Pedersen TR, Olsson AG, Faergeman O, Pyörälä K (1997) The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Am Coll Cardiol 3:249–254

    CAS  Google Scholar 

  • Knight DE, Kesteven NT (1983) Evoked transient intracellular free Ca2+ changes and secretion in isolated bovine adrenal medullary cells. Proc R Soc Lond Biol Sci 218:177–199

    Article  CAS  Google Scholar 

  • Laufs U, Fata VL, Liao JK (1997) Inhibition of 3-hydroxy-3-methylglutaryl (HMG)-Co A reductase blocks hypoxia-mediated down-regulation of endothelial nitric oxide synthase. J Biol Chem 272:31725–31729

    Article  CAS  PubMed  Google Scholar 

  • Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Lefer AM, Scalia R, Lefer DJ (2001) Vascular effects of HMG CoA-reductase inhibitors (statins) unrelated to cholesterol lowering: new concepts for cardiovascular disease. Cardiovasc Res 49:281–287

    Article  CAS  PubMed  Google Scholar 

  • Lim DY, Hwang DH (1991) Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27:53–67

    CAS  Google Scholar 

  • Lim DY, Kim CD, Ahn KW (1992) Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15:115–125

    Article  CAS  Google Scholar 

  • Matsuda T, Toyohira Y, Ueno S, Tsutsui M, Yanagihara N (2008) Simvastatin inhibits catecholamine secretion and synthesis induced by acetylcholine via blocking Na+ and Ca2+ influx in bovine adrenal medullary cells. J Pharmacol Exp Ther 327:130–136

    Article  CAS  PubMed  Google Scholar 

  • Mauro VF, MacDonald JL (1991) Simvastatin: a review of its pharmacology and clinical use. DICP 25:257–264

    Article  CAS  PubMed  Google Scholar 

  • McVeigh GE, Hamilton P, Wilson M, Hanratty CG, Leahey WJ, Devine AB, Morgan DG, Dixon LJ, McGrath LT (2002) Platelet nitric oxide and superoxide release during the development of nitrate tolerance: effect of supplemental ascorbate. Circulation 106:208–213

    Article  CAS  PubMed  Google Scholar 

  • Mühlhäuser U, Zolk O, Rau T, Münzel F, Wieland T, Eschenhagen T (2006) Atorvastatin desensitizes beta-adrenergic signaling in cardiac myocytes via reduced isoprenylation of G-protein γ-subunits. FASEB J 20:785–787

    Article  PubMed  Google Scholar 

  • Nakazato Y, Ohga A, Oleshansky M, Tomita U, Yamada Y (1988) Voltage-independent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol 93:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nette AF, Abraham G, Ungemach FR, Oertel R, Kirch W, Leineweber K, Mohr FW, Dhein S (2005) Interaction between simvastatin and metoprolol with respect to cardiac beta-adrenoceptor density, catecholamine levels and perioperative catecholamine requirements in cardiac surgery patients. Naunyn Schmiedebergs Arch Pharmacol 372:115–124

    Article  CAS  PubMed  Google Scholar 

  • Notarbartolo A, Davi G, Averna M, Barbagallo CM, Ganci A, Giammarresi C, La Placa FP, Patrono C (1995) Inhibition of thromboxane biosynthesis and platelet function by simvastatin in type IIa hypercholesterolemia. Arterioscler Thromb Vasc Biol 15:247–251

    Article  CAS  PubMed  Google Scholar 

  • O’Sullivan AJ, Burgoyne RD (1990) Cyclic GMP regulates nicotine-induced secretion from cultured bovine adrenal chromaffin cells: effects of 8-bromo-cyclic GMP, atrial natriuretic peptide, and nitroprusside (nitric oxide). J Neurochem 54:1805–1808

    Article  PubMed  Google Scholar 

  • Pedersen TR, Wilhelmsen L, Faergeman O, Strandberg TE, Thorgeirsson G, Troedsson L, Kristianson J, Berg K, Cook TJ, Haghfelt T, Kjekshus J, Miettinen T, Olsson AG, Pyörälä K, Wedel H (2000) Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering. Am J Cardiol 86:257–262

    Article  CAS  PubMed  Google Scholar 

  • Pliquett RU, Cornish KG, Peuler JD, Zucker IH (2003) Simvastatin normalizes autonomic neural control in experimental heart failure. Circulation 107:2493–2498

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Rifai N, Pfeffer MA, Sacks FM, Moye LA, Goldman S, Flaker GC, Braunwald E (1998) Inflammation, pravastatin, and the risk of coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events (CARE) investigators. Circulation 98:839–844

    Article  CAS  PubMed  Google Scholar 

  • Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto AM Jr (2001) Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 344:1959–1965

    Article  CAS  PubMed  Google Scholar 

  • Robinson JG (2007) Simvastatin: present and future perspectives. Expert Opin Pharmacother 8:2159–21270

    Article  CAS  PubMed  Google Scholar 

  • Sarr FS, André C, Guillaume YC (2008) Statins (HMG-coenzyme A reductase inhibitors)-biomimetic membrane binding mechanism investigated by molecular chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 868:20–27

    Article  CAS  PubMed  Google Scholar 

  • Schramm M, Thomas G, Towart R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537

    Article  CAS  PubMed  Google Scholar 

  • Sicouri S, Gianetti B, Zygmunt AC, Cordeiro JM, Antzelevitch C (2011) Antiarrhythmic effects of simvastatin in canine pulmonary vein sleeve preparations. J Am Coll Cardiol 57:986–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorimachi M, Yoshida K (1979) Exocytotic release of catecholamines and dopamine-beta-hydroxylase from the perfused adrenal gland of the rabbit and cat. Br J Pharmacol 65:117–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoll LL, McCormick ML, Denning GM, Weintraub NL (2005) Antioxidant effects of statins. Timely Top Med Cardiovasc Dis 9:E1

    PubMed  Google Scholar 

  • Tallarida RJ, Murray RB (1987) Manual of pharmacologic calculation with computer programs, 2nd edn. Speringer, New York, p 132

    Google Scholar 

  • Török J, L’upták I, Matúsková J, Pechánová O, Zicha J, Kunes J, Simko F (2007) Comparison of the effect of simvastatin, spironolactone and l-arginine on endothelial function of aorta in hereditary hypertriglyceridemic rats. Physiol Res 56 Suppl 2:S33–40

  • Torres M, Ceballos G, Rubio R (1994) Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells. J Neurochem 63:988–996

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama Y, Morita K, Kitayama S, Suemitsu T, Minami N, Miyasako T, Dohi T (1994) Possible involvement of nitric oxide in acetylcholine-induced increase of intracellular Ca2+ concentration and catecholamine release in bovine adrenal chromaffin cells. Jpn J Pharmacol 65:73–77

    Article  CAS  PubMed  Google Scholar 

  • Wada A, Takara H, Izumi F, Kobayashi H, Yanagihara N (1985a) Influx of 22Na through acetylcholine receptor-associated Na channels: relationship between 22Na influx, 45Ca influx and secretion of catecholamines in cultured bovine adrenal medullary cells. Neuroscience 15:283–292

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Satoh K, Taira N (1985b) Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn-Schmiedebergs Arch Pharmacol 328:382–387

    Article  CAS  PubMed  Google Scholar 

  • Wakade AR (1981) Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313:463–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakade AR, Wakade TD (1983) Contribution of nicotinic and muscarinic receptors in the secretion of catecholamines evoked by endogenous and exogenous acetylcholine. Neuroscience 10:973–978

    Article  CAS  PubMed  Google Scholar 

  • Westfall TG, Westfall DP (2005) Adrenergic agonists and antagonists. In: Brunton LL (ed) Goodman & Gilman: the pharmacological basis of therapeutics, 11th edn. McGraw-Hill, NY, pp 237–295

    Google Scholar 

  • Yada T, Nakata M, Shiraishi T, Kakei M (1999) Inhibition by simvastatin, but not pravastatin, of glucose-induced cytosolic Ca2+ signalling and insulin secretion due to blockade of L-type Ca2+ channels in rat islet β-cells. Br J Pharmacol 126:1205–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the research fund provided from Chosun University (2015–2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Yoon Lim.

Ethics declarations

Conflicts of interest

All contributing authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koh, YK., Kim, KH., Choi, MS. et al. Simvastatin reduces adrenal catecholamine secretion evoked by stimulation of cholinergic nicotinic and angiotensinergic AT1 receptors. Arch. Pharm. Res. 41, 333–346 (2018). https://doi.org/10.1007/s12272-018-1007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-018-1007-5

Keywords

Navigation