Archives of Pharmacal Research

, Volume 41, Issue 2, pp 192–195 | Cite as

Phenolic amides from Tribulus terrestris and their inhibitory effects on nitric oxide production in RAW 264.7 cells

  • Hyung Sik Kim
  • Jin Woo Lee
  • Hari Jang
  • Thi Phuong Linh Le
  • Jun Gu Kim
  • Moon Soon Lee
  • Jin Tae Hong
  • Mi Kyeong Lee
  • Bang Yeon Hwang
Research Article


A new phenolic amide, named cis-terrestriamide (7), together with ten known compounds (16, 811), were isolated from the methanolic extract of the fruits of Tribulus terrestris. The structure of 7 was elucidated on the basis of extensive analyses of 1D and 2D nuclear magnetic resonance spectroscopic and high resolution mass spectrometry data. Compounds 1, 2, 5, 6, 8, 9, and 11 exhibited inhibitory effects on the lipopolysaccharide-stimulated nitric oxide production in RAW 264.7 cells, with IC50 values of 18.7–49.4 μM.


Tribulus terrestris Zygophyllaceae Phenolic amide, Nitric oxide production inhibitor 



This work was supported by the Medical Research Center Program (MRC, 2017R1A5A2015541) through the National Research Foundation of Korea and by the intramural research grant of Chungbuk National University in 2015.


  1. Byun E, Jeong GS, An RB, Min TS, Kim YC (2010) Tribuli fructus constituents protect against tacrine-induced cytotoxicity in HepG2 cells. Arch Pharm Res 33:67–70CrossRefPubMedGoogle Scholar
  2. Cai L, Wu Y, Zhang J, Pei F, Xu Y, Xie S, Xu D (2001) Steroidal saponins from Tribulus terrestris. Planta Med 67:196–198CrossRefPubMedGoogle Scholar
  3. Chen CY, Chang FR, Yen HF, Wu YC (1998) Amides from stems of Annona cherimola. Phytochemistry 49:1443–1447CrossRefGoogle Scholar
  4. Chhatre S, Nesari T, Somani G, Kanchan D, Sathaye S (2014) Phytopharmacological overview of Tribulus terrestris. Pharmacogn Rev 8:45–51CrossRefPubMedPubMedCentralGoogle Scholar
  5. Fukuda N, Yonemitsu M, Kimura T (1983) Studies on the constituents of the stems of Tinospora tuberculata Beumee. I. N-trans- and N-cis-feruloyltyramine, and a new phenolic glucoside, tinotuberide. Chem Pharm Bull 31:156–161CrossRefGoogle Scholar
  6. Hong CH, Hur SK, Oh OJ, Kim SS, Nam KA, Lee SK (2002) Evaluation of natural products on inhibition of inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) in cultured mouse macrophage cells. J Ethnopharmacol 83:153–159CrossRefPubMedGoogle Scholar
  7. Hong SS, Choi YH, Jeong W, Kwon JG, Kim JK, Seo C, Ahn EK, Lee HH, Ko HJ, Seo DW, Oh JS (2013a) Two new furostanol glycosides from the fruits of Tribulus terrestris. Tetrahedron Lett 54:3967–3970CrossRefGoogle Scholar
  8. Hong SS, Jeong W, Kwon JG, Choi YH, Ahn EK, Ko HJ, Seo DW, Oh JS (2013b) Phenolic amides from the fruits of Tribulus terrestris and their inhibitory effects on the production of nitric oxide. Bull Korean Chem Soc 34:3105–3108CrossRefGoogle Scholar
  9. Jiang Y, Yu L, Wang MH (2015) N-trans-feruloyltyramine inhibits LPS-induced NO and PGE2 production in RAW 264.7 macrophages: involvement of AP-1 and MAP kinase signalling pathways. Chem Biol Interact 235:56–62CrossRefPubMedGoogle Scholar
  10. Kang LP, Wu KL, Yu HS, Pang X, Liu J, Han LF, Zhang J, Zhao Y, Xiong CQ, Song XB, Liu C, Cong YW, Ma BP (2014) Steroidal saponins from Tribulus terrestris. Phytochemistry 107:182–189CrossRefPubMedGoogle Scholar
  11. Ko HJ, Ahn EK, Oh JS (2015) N-trans-ρ-caffeoyl tyramine isolated from Tribulus terrestris exerts anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 cells. Int J Mol Med 36:1042–1048CrossRefPubMedGoogle Scholar
  12. Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER (2004) Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinense. Biotechnol Lett 26:1125–1130CrossRefPubMedGoogle Scholar
  13. Ma J, Jones SH, Hecht SM (2004) Phenolic acid amides: a new type of DNA strand scission agent from Piper caninum. Bioorg Med Chem 12:3885–3889CrossRefPubMedGoogle Scholar
  14. Nesterenko V, Putt KS, Hergenrother PJ (2003) Identification from a combinatorial library of a small molecule that selectively induces apoptosis in cancer cells. J Am Chem Soc 125(48):14672–14673CrossRefPubMedGoogle Scholar
  15. Nomura E, Kashiwada A, Hosoda A, Nakamura K, Morishita H, Tsuno T, Taniguchi H (2003) Synthesis of amide compounds of ferulic acid, and their stimulatory effects on insulin secretion in vitro. Bioorg Med Chem 11:3807–3813CrossRefPubMedGoogle Scholar
  16. Song YH, Kim DW, Curtis-Long MJ, Park C, Son M, Kim JY, Yuk HJ, Lee KW, Park KH (2016) Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur J Med Chem 114:201–208CrossRefPubMedGoogle Scholar
  17. Tang W, Eisenbrand B (2011) Handbook of Chinese medicinal plants: Chemistry, pharmacology, toxicology. Wiley-VCH, WeinheimGoogle Scholar
  18. Wang ZF, Wang BB, Zhao Y, Wang FX, Sun Y, Guo RJ, Song XB, Xin HL, Sun XG (2016) Furostanol and spirostanol saponins from Tribulus terrestris. Molecules 21:429CrossRefPubMedGoogle Scholar
  19. Wang S, Suh JH, Zheng X, Wang Y, Ho CT (2017) Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from wolfberry. J Agric Food Chem 65:364–372CrossRefPubMedGoogle Scholar
  20. Wu TS, Shi LS, Kuo SC (1999) Alkaloids and other constituents from Tribulus terrestris. Phytochemistry 50:1411–1415CrossRefGoogle Scholar
  21. Xu YX, Chen HS, Liang HQ, Gu ZB, Liu WY, Leung WN, Li TJ (2000) Three new saponins from Tribulus terrestris. Planta Med 66:545–550CrossRefPubMedGoogle Scholar
  22. Yang Y, Song ZG, Liu ZQ (2011) Synthesis and antioxidant capacities of hydroxyl derivatives of cinnamoylphenethylamine in protecting DNA and scavenging radicals. Free Radic Res 45:445–453CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  1. 1.College of PharmacyChungbuk National UniversityCheongjuKorea
  2. 2.College of Agriculture, Life and Environmental SciencesChungbuk National UniversityCheongjuKorea

Personalised recommendations