Archives of Pharmacal Research

, Volume 41, Issue 2, pp 184–191 | Cite as

Pyrazinone derivatives from the coral-derived Aspergillus ochraceus LCJ11-102 under high iodide salt

Research Article
  • 139 Downloads

Abstract

Five new pyrazin-2(1H)-one derivatives, ochramides A–D (14) and ochralate A (5), as well as three known analogues (68) were isolated from the fermentation broth of the marine coral-derived halotolerant Aspergillus ochraceus LCJ11-102 in a nutrient-limited medium containing 10% NaI. Their chemical structures were determined by analyzing NMR and X-ray diffraction data. Compounds 2, 5 and 6 showed antimicrobial activities against Enterobacter aerogenes with the MIC values of 40.0, 18.9, and 20.1 μM, respectively.

Keywords

Coral Halotolerant fungus Aspergillus ochraceus Antibacterial activity Aluminum chelates 

Notes

Acknowledgements

This work was supported by Grants from National Natural Science Foundation of China (Nos. 41376148, 81373298, U1501221, 81561148012 and U1406402-1), and from Special Fund for Marine Scientific Research in the Public Interest of China (No. 201405038). The working strain LCJ11-102 was identified by Prof. C. X. Fang, China Center for Type Culture Collection. The X-ray single crystal diffraction data analysis was performed by Prof. Dr. Zhiyong Wu.

Compliance with ethical standards

Conflict of interest

The authors have declared that there is no conflict of interest.

Supplementary material

12272_2017_928_MOESM1_ESM.cif (41 kb)
Supplementary material 1 (CIF 41 kb)
12272_2017_928_MOESM2_ESM.docx (4 mb)
Supplementary material 2 (DOCX 4080 kb)

References

  1. Abrell LM, Borgeson B, Crews P (1996) Chloro polyketides from the cultured fungus (Aspergillus) separated from a marine sponge. Tetrahedron Lett 37:2331–2334CrossRefGoogle Scholar
  2. Adam W, Bhushan V, Fuchs R, Kirchgassners U (1987) Functionalized 1,2-dioxetanes as potential phototherapeutic agents: the synthesis of carboxylate, carbonate, carbamate, and ether derivatives of 3-(hydroxymethyl)-3,4,4-trimethyl-1,2-dioxetane. J Org Chem 52:3059–3062CrossRefGoogle Scholar
  3. Alvarez ME, White CB, Gregory J, Kydd GC, Harris A, Sun HH, Gillum AM, Cooper R (1995) Phevalin, a new calpain inhibitor, from a Streptomyces sp. J Antibiot 48:1165–1167CrossRefPubMedGoogle Scholar
  4. Bian XQ, Shao ML, Pan HQ, Wang KB, Huang SD, Wu X, Xue CM, Hua HM, Pei YH, Bai J (2016) Paenibacillin A, a new 2(1H)-pyrazinone ring-containing natural product from the endophytic bacterium Paenibacillus sp. Xy-2. Nat Prod Res 30:125–130CrossRefPubMedGoogle Scholar
  5. Cui CM, Li XM, Li CS, Sun HF, Gao SS, Wang BG (2009) Benzodiazepine alkaloids from marine-derived endophytic fungus Aspergillus ochraceus. Helv Chim Acta 92:1366–1370CrossRefGoogle Scholar
  6. Cui CM, Li XM, Meng L, Li CS, Huang CG, Wang BG (2010) 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related steroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J Nat Prod 73:1780–1784CrossRefPubMedGoogle Scholar
  7. Fang W, Lin XP, Zhou XF, Wan JT, Lu X, Yang B, Ai W, Lin J, Zhang TY, Tu ZC, Liu YH (2014) Cytotoxic and antiviral nitrobenzoylsesquiterpenoids from the marine-derived fungus Aspergillus ochraceus Jcma1F17. Med Chem Commun 5:701–705CrossRefGoogle Scholar
  8. Guzman FS, Gloer JB, Wicklow DT, Dowd PF (1992) New diketopiperazine metabolites from the sclerotia of Aspergillus ochraceus. J Nat Prod 55:931–939CrossRefPubMedGoogle Scholar
  9. Guzman FS, Bruss DR, Rippentrop JM, Gloer KB, Gloer JB, Wicklow DT, Dowd PF (1994) Ochrindoles A-D: new bis-indolyl benzenoids from the sclerotia of Aspergillu sochraceus nrrl 3519. J Nat Prod 57:634–639CrossRefPubMedGoogle Scholar
  10. Jansen R, Sood S, Mohr KI, Kunze B, Irschik H, Stadler M, Müller R (2014) Nannozinones and sorazinones, unprecedented pyrazinones from myxobacteria. J Nat Prod 77:2545–2552CrossRefPubMedGoogle Scholar
  11. Khmel IA (2005) Regulation of expression of bacterial genes in the absence of active cell growth. Russ J Genet 41:968–984CrossRefGoogle Scholar
  12. Koch AL (1993) Genetic response of microbes to extreme challenges. J Theor Biol 160:1–21CrossRefPubMedGoogle Scholar
  13. Li HJ, Cai YT, Chen YY, Lam CK, Lan WJ (2010) Metabolites of marine fungus Aspergillus sp. collected from soft coral Sarcophyton tortuosum. Chem Res Chin U 26:415–419Google Scholar
  14. Lu Z, Zhu H, Fu P, Wang Y, Zhang Z, Lin P, Liu P, Zhuang Y, Hong K, Zhu W (2010) Cytotoxic polyphenols from the marine-derived fungus Penicillium expansum. J Nat Prod 73:911–914CrossRefPubMedGoogle Scholar
  15. MacDonald JC, Micetich RG, Haskins RH (1964) Antibiotic activity of neoaspergillic acid. Can J Microbiol 10:90–92CrossRefPubMedGoogle Scholar
  16. Maebayashi Y, Sumita M, Fukushima K, Yamazaki M (1978) Isolation and structure of red pigment from Aspergillus ochraceus Wilh. Chem Pharm Bull 26:1320–1322CrossRefGoogle Scholar
  17. Méjanelle L, Lòpez JF, Gunde-Cimerman N, Grimalt JO (2001) Ergosterol biosynthesis in novel melanized fungi from hypersaline environments. J Lipid Res 42:352–358PubMedGoogle Scholar
  18. Motohashi K, Inaba K, Fuse S, Doi T, Izumikawa M, Khan ST, Takagi M, Takahashi T, Shin-ya K (2011) JBIR-56 and JBIR-57, 2(1H)-pyrazinones from a marine sponge-derived Streptomyces sp. SpD081030SC-03. J Nat Prod 74:1630–1635CrossRefPubMedGoogle Scholar
  19. Peng XP, Wang Y, Liu PP, Hong K, Chen H, Yin X, Zhu WM (2011a) Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch Pharm Res 34:907–912CrossRefPubMedGoogle Scholar
  20. Peng X, Wang Y, Sun K, Liu P, Yin X, Chen H, Yin X, Zhu W (2011b) Cerebrosides and 2-pyridone alkaloids from the halotolerant fungus Penicillium chrysogenum grown in a hypersaline medium. J Nat Prod 74:1298–1302CrossRefPubMedGoogle Scholar
  21. Pilli RA, Victor MM, Meijere AJ (2000) First total synthesis of Aspinolide B, a new pentaketide produced by Aspergillus ochraceus. J Org Chem 65:5910–5916CrossRefPubMedGoogle Scholar
  22. Schlictman D, Kubo M, Shankar S, Chakrabarty AM (1995) Regulation of nucleoside diphosphate kinase and secretable virulence factors in Pseudomonas aeruginosa: roles of algR2 and algH. J Bacteriol 177:2469–2474CrossRefPubMedPubMedCentralGoogle Scholar
  23. Shaala LA, Youssef DTA, Badr JM, Harakeh SM (2016) Bioactive 2(1H)-pyrazinones and diketopiperazine alkaloids from a tunicate-derived actinomycete Streptomyces sp. Molecules 21:1116CrossRefGoogle Scholar
  24. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112CrossRefPubMedGoogle Scholar
  25. Sugie Y, Hirai H, Inagaki T, Ishiguro M, Kim YJ, Kojima Y, Sakakibara T, Sakemi S, Sugiura A, Suzuki Y, Brennan L, Duignan J, Huang LH, Sutcliffe J, Kojima NJ (2001) A new antibiotic CJ-17,665 from Aspergillus ochraceus. J Antibiot 54:911–916CrossRefPubMedGoogle Scholar
  26. Tamburini E, Mastromei G (2000) Do bacterial cryptic genes really exist? Res Microbiol 151:179–182CrossRefPubMedGoogle Scholar
  27. Tatsuta K, Tsuchiya T, Someno T, Umezawa S, Umezawa H, Naganawa H (1971) Arglecin, a new microbial metabolite isolation and chemical structure. J Antibiot 24:735–746CrossRefPubMedGoogle Scholar
  28. Tatsuta K, Fujimoto K, Yamashita M, Tsuchiya T, Umezawa S, Umezawa H (1973) Argvalin, a new microbial metabolite: isolation and structure. J Antibiot 26:606–608CrossRefPubMedGoogle Scholar
  29. Thomasi SS, Granato AC, Romano LH, Dhooghe L, Nascimento ESD, Badino AC, Silva MFGFD, Ferreira AG, Venancio T (2014) Unusual 2(1H)-pyrazinones isolated from a culture of a brazilian marine-derived Streptomyces sp. Nat Prod Commun 9:1275–1278PubMedGoogle Scholar
  30. Ueno T, Nishimura A, Yoshizako F (1977) Isolation and identification of a new analogue of aspergillic acid derived from valine and isoleucine. Agric Biol Chem 41:901–902Google Scholar
  31. Wang Y, Gloer JB, Scott JA, Malloch D (1995) Terezines A-D: new amino acid-derived bioactive metabolites from the coprophilous fungus Sporormiella teretispora. J Nat Prod 58:93–99CrossRefPubMedGoogle Scholar
  32. Wang W, WangY Tao H, Peng X, Liu P, Zhu W (2009) Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J Nat Prod 72:1695–1698CrossRefPubMedGoogle Scholar
  33. Wang Y, Zheng J, Liu P, Wang W, Zhu W (2011a) Three new compounds from Aspergillus terreus pt06-2 grown in a high salt medium. Mar Drugs 9:1368–1378CrossRefPubMedPubMedCentralGoogle Scholar
  34. Wang Y, Lu Z, Sun K, Zhu W (2011b) Effects of high salt stress on secondary metabolites from marine-derived fungus Spicaria elegans. Mar Drugs 9:535–542CrossRefPubMedPubMedCentralGoogle Scholar
  35. White EC, Hill JH (1943) Studies on antibacterial products formed by molds: I. Aspergillic acid, a product of a strain of Aspergillus flavus. J Bacteriol 45:433–442PubMedPubMedCentralGoogle Scholar
  36. Xu X, He F, Zhang X, Bao J, Qi S (2013) New mycotoxins from marine-derived fungus Aspergillus sp. SCSGAF0093. Food Chem Toxicol 53:46–51CrossRefPubMedGoogle Scholar
  37. Yamazaki M, Maebayashi Y, Miyaki K (1972) The isolation of secalonic acid A from Aspergillus ochraceus cultured on rice. Chem Pharm Bull 20:2274–2276CrossRefGoogle Scholar
  38. Zaika LL (1988) Spices and herbs: their antimicrobial activity and its determination. J Food Saf 9:97–118CrossRefGoogle Scholar
  39. Zheng J, Zhu H, Hong K, Wang Y, Liu P, Wang X, Peng X, Zhu W (2009) Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org Lett 11:5262–5265CrossRefPubMedGoogle Scholar
  40. Zheng J, Wang Y, Wang J, Liu P, Li J, Zhu W (2010) Cyclic tripeptides from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J Nat Prod 73:1133–1137CrossRefPubMedGoogle Scholar
  41. Zheng J, Wang Y, Wang J, Liu P, Li J, Zhu W (2013) Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 17:963–971CrossRefPubMedGoogle Scholar
  42. Zhou Y, Wang Y, Liu P, Wang Z, Zhu W (2010) Effects of environmental stress on secondary metabolites of Aspergillus ochraceus LCJ11-102 associated with the coral Dichotella gemmacea. Acta Microbiol Sin 50:1023–1029Google Scholar
  43. Zimmermann M, Fischbach MA (2010) A family of pyrazinone natural products from a conserved nonribosomal peptide synthetase in Staphylococcus aureus. Chem Biol 17:925–930CrossRefPubMedGoogle Scholar

Copyright information

© The Pharmaceutical Society of Korea 2017

Authors and Affiliations

  1. 1.Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and PharmacyOcean University of ChinaQingdaoChina
  2. 2.School of PharmacyQingdao UniversityQingdaoChina

Personalised recommendations