Skip to main content
Log in

Synthesis, pharmacological activity evaluation and molecular modeling of new polynuclear heterocyclic compounds containing benzimidazole derivatives

  • Research Article
  • Drug Design and Discovery
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Novel heterocyclic compounds containing benzimidazole derivatives were synthesized from 2-(1Hbenzimidazol-2-yl) acetonitrile (1) and arylhydrazononitrile derivative 2 was obtained via coupling of 1 with 4-methyl phenyldiazonium salt, which was then reacted with hydroxylamine hydrochloride to give amidooxime derivative 3. This product was cyclized into the corresponding oxadiazole derivative 4 upon reflux in acetic anhydride. Compound 4 was refluxed in DMF in the presence of triethylamine to give the corresponding 5-(1H-benzimidazol-2-yl)-2-p-tolyl-2H-1,2,3-triazol-4-amine 6. Treatment of compound 6 with ethyl chloroformate afforded 2,6-dihydro-2-(4-methylphenyl)-1,2,3-triazolo[4″,5″-4′,5′]pyrimido[1,6-a]benzimidazole-5(4H)-one (8). 1,2-bis(2-cyanomethyl-1H-benzimidazol-1-yl)ethane-1,2-dione (10) was synthesized via the condensation reaction of 2-(1H-benzimidazol-2-yl) acetonitrile (1) and diethyloxalate. The reactivity of compound 10 towards some diamine reagents was studied. The in vitro antimicrobial activity of the synthesized compounds was investigated against several pathogenic bacterial strains such as Escherichia coli O157, Salmonella typhimurium, E. coli O119, S. paratyphi, Pseudomonas aeruginosa, Staphylococcus aureus, Listeria monocytogenes and Bacillus cereus. The results of MIC revealed that compounds 12ac showed the most effective antimicrobial activity against tested strains. On the other hand, compounds 12a, b exhibited high activity against rotavirus Wa strain while compounds 12b, c exhibited high activity against adenovirus type 7. In silico target prediction, docking and validation of the compounds 12ac were performed. The dialkylglycine decarboxylase bacterial enzyme was predicted as a potential bacterial target receptor using pharmacophorebased correspondence with previous leads; giving the highest normalized scores and a high correlation docking score with mean inhibition concentrations. A novel binding mechanism was predicted after docking using the MOE software and its validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akbay, A., Oren, I., Temiz-Arpaci, O., Aki-Sener, E., and Yalcin, I., Synthesis and HIV-1 reverse transcriptase inhibitor activity of some 2,5,6-substituted benzoxazole, benzimidazole, benzothiazole and oxazolo(4,5-b)pyridine derivatives. Arzneimittelforschung, 53, 266–271 (2003).

    PubMed  CAS  Google Scholar 

  • Al-Saleh, B., El-Apasery, M. A., and Elnagdi, M. H., Studies with 3-substituted 2-arylhydrazono-3-oxoaldehydes: new routes for synthesis of 2-arylhydrazono-3-oxonitriles, 4-unsubstituted 3,5-diacylpyrazoles and 4-arylazophenols. J. Chem. Res., 8, 578–580 (2004).

    Article  Google Scholar 

  • Alzaydi, K. M., A simplified green chemistry approaches to synthesis of 2-substituted 1,2,3-triazoles and 4-amino-5-cyanopyrazole derivatives conventional heating versus microwave and ultrasound as ecofriendly energy sources. Ultrason. Sonochem., 16, 805–809 (2009).

    Article  CAS  Google Scholar 

  • Andrews, J. M., Determination of minimum inhibitory concentration. J. Antimicrob. Chemother., 48, 5–16 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Ayhan-Kilcigil, G. and Altanlar, N., Synthesis and antifungal properties of some benzimidazole derivatives. Turk. J. Chem., 30, 223–228 (2006).

    CAS  Google Scholar 

  • Bertelli, L., Biagi, G., Giorgi, I., Manera, C., Livi, O., Scartoni, V., Betti, L., Giannaccini, G., Trincavelli, L., and Barili, P. L., 1,2,3-Triazolo[1,5-a]quinoxalines: synthesis and binding to benzodiazepine and adenosine receptors. Eur. J. Med. Chem., 33, 113 (1998).

    Article  CAS  Google Scholar 

  • Boiani, M. and Gonzalez, M., Imidazole and benzimidazole derivatives as chemotherapeutic agents. Mini Rev. Med. Chem., 5, 409–424 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Brik, A., Alexandratos, J., Lin, Y. C., Elder, J. H., Olson, A. J., Wlodawer, A., Goodsell, D. S., and Wong, C. H., 1,2,3-triazole as a peptide surrogate in the rapid synthesis of HIV-1 protease inhibitors. Chembiochem, 6, 1167–1169 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Buchi, J., Zwieky, H., and Aebi, A., Synthese einiger 1,2-benzimidazol-derivate. Arch. Pharm., 293, 758–766 (1960).

    Article  CAS  Google Scholar 

  • Carta, A., Sanna, P., Gherardini, U. D., and Zanetti, S., Novel functionalized pyrido[2,3-9]quinoxalinones as antibacterial, antifungal and anticancer agents. Il Farmaco, 56, 933–938 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Cook, G. C., Use of benzimidazole chemotherapy in human helminthiases: indication and efficacy. Parasitol. Today, 6, 133–136 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Eslam, R. S., Fatma, A. B., Sherifa, A. B., Hanaa, M. R., and Mohamed, M. A., Synthesis and biological activity of some new 1-benzyl and 1-benzoyl-3-heterocyclic indole derivatives. Acta Pharm., 60, 55–71 (2010).

    Article  Google Scholar 

  • Fan, W. Q. and Katritzky, A. R., Comprehensive Heterocyclic Chemistry II, Elsevier, New York, (1996).

    Google Scholar 

  • Fatma, A. B., Sherifa, M., Abu-B., Abdel Salam, O. I., and Abdel Rehim, M., Synthesis and anticancer activity of some diazepine and diazocine derivatives. Egypt Pharm. J., 8, 107–120 (2009).

    Google Scholar 

  • Garuti, L., Roberti, M., and Cermelli, C., Synthesis and antiviral activity of some N-benzene sulphonyl benzimidazoles. Bioorg. Med. Chem. Lett., 9, 2525–2530 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Ghozlan, S. A., Badahdah, K. O., and Abdelhamid, I. A., An easy synthesis of 5-functionally substituted ethyl 4-amino-1-aryl-pyrazolo-3-carboxylates: interesting precursors to sildenafil analogues. Belistien J. Org. Chem., 3, 15–16 (2007).

    Article  Google Scholar 

  • Goker, H., Alp, M., and Yildiz, S., Synthesis and potent antimicrobial activity of some novel N-(alkyl)-2-phenyl-1H-benzimidazole-5-carboxamidines. Molecules, 10, 1377–1386 (2000).

    Article  Google Scholar 

  • Hanaa, A. T., Fatma, A. B., Amira, M. G., Mona, A. A., and Wageeh, S. H., Tumor anti-initiating activity of some novel 3,4-dihydropyrimidinones. Pharmacol. Rep., 61, 1153–1161 (2009).

    Google Scholar 

  • Hatem, A. A, Tamer, S. S, and Heba, S. A., Facile synthesis and in-vitro antitumor activity of some pyrazolo[3,4-b]pyridines and pyrazolo[1,5-a]pyrimidines linked to a thiazolo [3,2-a]benzimidazole moiety. Arch. Pharm. (Weinheim), 343, 24–30 (2010).

    Google Scholar 

  • Haugwitz, R. D., Martinez, A. J., Venslavsky, J., Angel, R. G., Maurer, B. V., Jacobs, G. A., Narayanan, V. L., Cruthers, L. R, and Szanto, J., Antiparasitic agents. 6. Synthesis and anthelmintic activities of novel isothiocyanatophenyl-1,2,4-oxadiazoles. J. Med. Chem., 28, 1234–1241 (1985).

    Article  PubMed  CAS  Google Scholar 

  • He, Y., Wu, B., Yang, J., Robinson, D., Risen L., Ranken, R., Blyh, L., Sheng, S., and Swayze, E. E., 2-piperidin-4-yl-benzimidazoles with broad spectrum antibacterial activities. Bioorg. Med. Chem. Lett., 13, 3253–3256 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Jaso, A., Zarranz, B., Aldana, I., and Monge, A., Synthesis of new 2-acetyl and 2-benzoylquinoxaline 1,4-di-N-oxide derivatives as antimycobacterium tuberculosis agents. Eur. J. Med. Chem. 38, 791–800 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Kazimierczuk, Z., Upcroft, J. A., Upcroft, P., Gorska, A., Starosciak, B., and Laudy A., Synthesis, antiprotazoal and antibacterial activity of nitro and halogeno-substituted benzimidazole derivatives. Acta Biochim. Polon., 49, 185–195 (2002).

    PubMed  CAS  Google Scholar 

  • Kerwin, S. M., ChemBioOffice Ultra suite 2010. J. Am. Chem. Soc., 132, 2466–2467 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Khalafi-Nezhad, A., Rad, M. N. S., Mohabatkar, H., Asrari, Z., and Hemmateenejad, B., Design, synthesis, antibacterial and QSAR studies of benzimidazole and imidazole chloroaryloxyalkyl derivatives. Bioorg. Med. Chem., 13, 1931–1938 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S., Li, Z., Li, H., and Jiang, H., PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res., 38, 609–614 (2010).

    Article  Google Scholar 

  • Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55–63 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, P. T. M., Baldeck, J. D., Olsson, J., and Marquis, R. E., Antimicrobial actions of benzimidazoles against oral streptococci. Oral Microbiol. Immunol., 20, 93–100 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Podunavac-Kuzmanović, S. O., Leovac, V. M., Perišiæ-Janjić, N. U., Rogan, J., and Balaž, J., Complexes cobalt (II), zinc (II) and copper (II) with some newly synthesized benzimidazole derivatives and their antibacterial activity. J. Serb. Chem. Soc., 64, 381–388 (1999).

    Google Scholar 

  • Podunavac-Kuzmanović, S. O., Cvetković, D., Podunavac-Kuzmanović, S. O., and Cvetković, D., Antibacterial evaluation of some benzimidazole derivatives and their zinc (II) complexes. J. Serb. Chem. Soc., 75, 459–466 (2007).

    Article  Google Scholar 

  • Rybak, M. J. and Akins, R. L., Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance: clinical significance and treatment options. Drugs, 61, 1–7 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Sanjeevkumar, G., Hanumanagoud, H., and Basavaraja, K. M., Analgesic and anti-inflammatory activity of 3-methoxy-5-nitro-2-(1′,3′,4′-oxadiazolyl,1′,3′,4′-thiadiazolyl and 1′,2′,4′-triazolyl)benzofurans. J. Chem. Pharm. Res., 2, 387–392 (2010).

    Google Scholar 

  • Sarges, R., Howard, H. R., Browne, R. G., Lebel, L. A., Seymour, P. A., and Koe, B. K., 4-Amino[1,2,4]triazolo[4,3-a]quinoxalines. A novel class of potent adenosine receptor antagonists and potential rapid-onset antidepressants. J. Med. Chem., 33, 2240–2254 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Sgouras, D., Maragkoudakis, P., Petraki, K., Martinez-Gonzalez, B., Eriotou, E., Michopoulos, S., Kalantzopoulos, G., Tsakalidou, E., and Mentis, A., In vitro and in vivo inhibition of Helicobacter pylori by Lactobacillus casei strain Shirota. Appl. Environ. Microbiol., 70, 518–526 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Shivi, B. and Monika, G., 1, 3, 4-Oxadiazole as antimicrobial agents: an overview. J. Chem. Pharm. Res., 3, 137–147 (2011).

    Google Scholar 

  • Simões, C. M. O., Amoros, M., and Girre, L., Mechanism of antiviral activity of triterpenoid saponins. Phytother. Res., 13, 323–328 (1999).

    Article  PubMed  Google Scholar 

  • Tamer, S., Saleh, A., Al-Omar Mohamed, A., and Abdel-Aziz, H., One-pot synthesis of enaminones using gold’s reagent. Lett. Org. Chem., 7, 483–486 (2010).

    Article  Google Scholar 

  • Valdez, J., Cedillo, R., Hernández-Campos, A., Yépez, L., Hernández-Luis, F., Navarrete-Vázquez, G., Tapia, A., Cortés, R., Hernández, M., and Castillo, R., Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett., 12, 2221–2224 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Vijayakumar, K. and Jafar, A. A., Synthesis, anti-tumor, antidiabetic, and anti-asthmatic activitives of some novel benzimidazole derivatives. J. Chem. Pharm. Res., 2, 215–224 (2010).

    CAS  Google Scholar 

  • Vlietinck, J., Van Hoof, L., Totté, J., Lasure, A., Vanden Berghe, D., Rwangabo, P. C., and Mvukiyumwami, J., Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J. Ethnopharmacol., 46, 31–473 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Walum, E., Strenberg, K., and Jenssen, D., Principles and Pratice. Ellis Howood, NewYork, (1990).

    Google Scholar 

  • Whiting, M., Tripp, J. C., Lin, Y. C., Lindstorm, W., Olson, A. J., Elder, J. H., Sharpless, K. B., and Fokin, V. V., Rapid discovery and structure-activity profiling of novel inhibitors of human immunodeficiency virus type 1 protease enabled by the copper(I)-catalyzed synthesis of 1,2,3-triazoles and their further functionalization. J. Med. Chem., 49, 7697–7710 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Wiart, C., Goniothalamus species: a source of drugs for the treatment of cancers and bacterial infections? Evid. Based Complement. Alternat. Med., 4, 299–311 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma A. Bassyouni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bassyouni, F.A., Saleh, T.S., ElHefnawi, M.M. et al. Synthesis, pharmacological activity evaluation and molecular modeling of new polynuclear heterocyclic compounds containing benzimidazole derivatives. Arch. Pharm. Res. 35, 2063–2075 (2012). https://doi.org/10.1007/s12272-012-1204-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-1204-6

Key words

Navigation