Advertisement

BIOspektrum

, Volume 24, Issue 3, pp 324–326 | Cite as

Knallgasbakterien – neue Synthesewege mit Cupriavidus necator

  • Sofia Milker
  • Cindy Kunze
  • Anne Sydow
  • Cora Kroner
  • Dirk Holtmann
Biotechnologie Flexible Bioproduktion

Abstract

Climate change and the finite nature of fossil fuels raise the need for the fixation of CO2 and conversion into traditionally petroleum-derived chemicals. With Cupriavidus necator as an easily genetically modifiable biocatalyst, a wide range of products, e. g. polymers, platform chemicals, biofuels, and terpenes, can be accessed. The wide range of applications as well as a prominent example of electrochemical α-humulene production from CO2 are promising developments towards a bio-based society.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Sydow A, Krieg T, Mayer F et al. (2014) Electroactive bacteria-molecular mechanisms and genetic tools. Appl Microbiol Biotechnol 98:8481–8495CrossRefPubMedGoogle Scholar
  2. [2]
    Heinrich D, Raberg M, Steinbüchel A (2017) Studies on the aerobic utilization of synthesis gas (syngas) by wild type and recombinant strains of Ralstonia eutropha H16. Microb Biotechnol, doi: 10.1111/1751-7915.12873Google Scholar
  3. [3]
    Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57:6CrossRefPubMedGoogle Scholar
  4. [4]
    Raberg M, Voigt B, Hecker M et al. (2014) A closer look on the polyhydroxybutyrate-(PHB-) negative phenotype of Ralstonia eutropha PHB-4. PLoS One 9:1–11CrossRefGoogle Scholar
  5. [5]
    Gruber S, Hagen J, Schwab H et al. (2014) Versatile and stable vectors for efficient gene expression in Ralstonia eutropha H16. J Biotechnol 186:74–82CrossRefPubMedGoogle Scholar
  6. [6]
    Sydow A, Pannek A, Krieg T et al. (2017) Expanding the genetic tool box for Cupriavidus necator by a stabilized L-rhamnose inducible plasmid system. J Biotechnol 263:1–10CrossRefPubMedGoogle Scholar
  7. [7]
    Tee KL, Grinham J, Othusitse AM et al. (2017) An efficient transformation method for the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Biotechnol J 12, doi: 10.1002/biot.201700081Google Scholar
  8. [8]
    Raberg M, Volodina E, Lin K et al. (2017) Ralstonia eutropha H16 in progress: applications beside PHAs and establishment as production platform by advanced genetic tools. Crit Rev Biotechnol 0:1–17Google Scholar
  9. [9]
    Marc J, Grousseau E, Lombard E et al. (2017) Over-expression of GroESL in Cupriavidus necator for heterotrophic and autotrophic isopropanol production. Metab Eng 42:74–84CrossRefPubMedGoogle Scholar
  10. [10]
    Krieg T, Sydow A, Faust S et al. (2018) CO2 to terpenes: autotrophic and electroautotrophic α-humulene production with Cupriavidus necator. Angew Chemie Int Ed 57:1–5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Sofia Milker
    • 1
  • Cindy Kunze
    • 1
  • Anne Sydow
    • 1
  • Cora Kroner
    • 1
  • Dirk Holtmann
    • 1
  1. 1.DECHEMA-Forschungsinstitut Industrielle BiotechnologieFrankfurt a. M.Deutschland

Personalised recommendations