, Volume 24, Issue 3, pp 246–249 | Cite as

A tale of a tail – eine kurze Geschichte der Biosynthese von Flagellen

  • Marc Erhardt
Wissenschaft Fortbewegungsorganell


Flagella are the primary organelles of motility and the most prominent extracellular structure of bacteria. The flagellum is a remarkably complex structure and made of several tens of thousands individual building blocks. Many molecular details concerning the organization and assembly mechanisms remain poorly understood. We study the self-assembly processes of the flagellum and aim to understand how nature succeeds in assembling these nanomachines in simple, elegant, yet robust ways.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chevance FFV, Hughes KT (2008) Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Cornelis GR (2006) The type III secretion injectisome. Nat Rev Microbiol 4:811–825CrossRefPubMedGoogle Scholar
  3. [3]
    Paul K, Erhardt M, Hirano T et al. (2008) Energy source of flagellar type III secretion. Nature 451:489–492CrossRefPubMedGoogle Scholar
  4. [4]
    Erhardt M, Mertens ME, Fabiani FD et al. (2014) ATPase-independent type-III protein secretion in Salmonella enterica. PLoS Genet 10:e1004800CrossRefGoogle Scholar
  5. [5]
    Erhardt M, Wheatley P, Kim EA et al. (2017) Mechanism of type-III protein secretion: regulation of FlhA conformation by a functionally critical charged-residue cluster. Mol Microbiol 104:234–249CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Barker CS, Meshcheryakova IV, Kostyukova AS et al. (2010) FliO regulation of FliP in the formation of the Salmonella enterica flagellum. PLoS Genet 6:e1001143CrossRefGoogle Scholar
  7. [7]
    Fabiani FD, Renault TT, Peters B et al. (2017) A flagellumspecific chaperone facilitates assembly of the core type III export apparatus of the bacterial flagellum. PLoS Biol 15:e2002267CrossRefGoogle Scholar
  8. [8]
    Cohen EJ, Ferreira JL, Ladinsky MS et al. (2017) Nanoscale-length control of the flagellar driveshaft requires hitting the tethered outer membrane. Science 356:197–200CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Shibata S, Takahashi N, Chevance FFV et al. (2007) FliK regulates flagellar hook length as an internal ruler. Mol Microbiol 64:1404–1415CrossRefPubMedGoogle Scholar
  10. [10]
    Erhardt M, Singer HM, Wee DH et al. (2011) An infrequent molecular ruler controls flagellar hook length in Salmonella enterica. EMBO J 30:2948–2961CrossRefPubMedPubMedCentralGoogle Scholar
  11. [11]
    Evans LDB, Poulter S, Terentjev E et al. (2013) A chain mechanism for flagellum growth. Nature 504:287–290CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Renault TT, Abraham AO, Bergmiller T et al. (2017) Bacterial flagella grow through an injection-diffusion mechanism. eLife 6:e23136CrossRefGoogle Scholar
  13. [13]
    Francis NR, Sosinsky GE, Thomas D et al. (1994) Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. J Mol Biol 235:1261–1270CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Biologie – BakterienphysiologieHumboldt-Universität zu BerlinBerlinDeutschland

Personalised recommendations