, Volume 24, Issue 3, pp 243–245 | Cite as

Polyploidie in Prokaryoten: Verbreitung und evolutionäre Vorteile

  • Katharina Ludt
  • Jörg SoppaEmail author
Wissenschaft Genomkopien


The majority of prokaryotic species is oligoploid or polyploid. Polyploidy has many evolutionary advantages and has most probably evolved independently in different phylogenetic lineages. Various benefits are discussed, including resistance to double strand breaks and the usage of genomic DNA as a phosphate storage polymer. Intermolecular gene conversion leads to the equalization of genome copies. A high fraction of polyploid species in natural populations challenges the interpretation of sequence-based community structure analyses.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Pecoraro V, Zerulla K, Lange C et al. (2011) Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species. PLoS One 6:e16392CrossRefGoogle Scholar
  2. [2]
    Breuert S, Allers T, Spohn G et al. (2006) Regulated polyploidy in halophilic archaea. PLoS One 1:e92CrossRefGoogle Scholar
  3. [3]
    Griese M, Lange C, Soppa J (2011) Ploidy in cyanobacteria. FEMS Microbiol Lett 323:124–131CrossRefPubMedGoogle Scholar
  4. [4]
    Böttinger B, Semmler F, Zerulla K et al. (2018) Regulated ploidy of Bacillus subtilis and three new isolates of Bacillus and Paenibacillus. FEMS Microbiol Lett 365, doi: 10.1093/femsle/fnx282Google Scholar
  5. [5]
    Mendell JE, Clements KD, Choat JH et al. (2008) Extreme polyploidy in a large bacterium. Proc Natl Acad Sci USA 105:6730–6734CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Angert ER (2012) DNA replication and genomic architecture of very large bacteria. Annu Rev Microbiol 66:197–212CrossRefPubMedGoogle Scholar
  7. [7]
    Zerulla K, Soppa J (2014) Polyploidy in haloarchaea: advantages for growth and survival. Front Microbiol 5:274CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Soppa J (2014) Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 24:409–419CrossRefPubMedGoogle Scholar
  9. [9]
    Jaakkola ST, Zerulla K, Guo Q et al. (2014) Halophilic archaea cultivated from surface sterilized middle-late eocene rock salt are polyploid. PLoS One 9:e110533CrossRefGoogle Scholar
  10. [10]
    Zahradka K, Slade D, Bailone A et al. (2006) Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature 443:569–573PubMedGoogle Scholar
  11. [11]
    Zerulla K, Chimileski S, Näther D et al. (2014) DNA as a phosphate storage polymer and the alternative advantages of polyploidy for growth or survival. PLoS One 9:e94819CrossRefGoogle Scholar
  12. [12]
    Zerulla K, Ludt K, Soppa J (2016) The ploidy level of Synechocystis sp. PCC 6803 is highly variable and is influenced by growth phase and by chemical and physical external parameters. Microbiology 162:730–739CrossRefPubMedGoogle Scholar
  13. [13]
    Lange C, Zerulla K, Breuert S et al. (2011) Gene conversion results in the equalization of genome copies in the polyploid haloarchaeon Haloferax volcanii. Mol Microbiol 80:666–677CrossRefPubMedGoogle Scholar
  14. [14]
    Hildenbrand C, Stock T, Lange C et al. (2011) Genome copy numbers and gene conversion in methanogenic archaea. J Bacteriol 193:734–743CrossRefPubMedGoogle Scholar
  15. [15]
    Ionescu D, Bizic-Ionescu M, De Maio N et al. (2017) Community-like genome in single cells of the sulfur bacterium Achromatium oxaliferum. Nat Commun 8:455CrossRefPubMedPubMedCentralGoogle Scholar
  16. [16]
    Soppa J (2017) Polyploidy and community structure. Nat Microbiol 2:16261CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institut für Molekulare BiowissenschaftenGoethe-Universität Frankfurt a. M.Frankfurt a. M.Deutschland

Personalised recommendations