, Volume 24, Issue 2, pp 156–159 | Cite as

Bestimmung der Stabilität und Enantioselektivität von Lipasen

  • Alexander Fulton
  • Filip Kovacic
  • Ulrich Schwaneberg
  • Jörg Pietruszka
  • Karl-Erich Jaeger
Wissenschaft · Methoden Hochdurchsatz-Screening-Methoden


Enzymes play an increasingly important role for biotechnological applications. Hence, it is important to identify, isolate and characterize novel enzymes. Genome and metagenome projects provide a wealth of novel genes; however, functional screening of the respective enzymes is important to identify enzymatically active biocatalysts. Here, we report on screening methods to identify regio-and enantioselective lipases and industrially relevant properties including detergent stability.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Reetz MT, Kühling KM, WIlensek S. et al. (2001) A GCbased method for high-throughput screening of enantioselective catalysts. Catal Today 67:389–396CrossRefGoogle Scholar
  2. [2]
    Trapp O (2007) Boosting the throughput of separation techniques by “multiplexing”. Angew Chem Int Ed 46:5609–5613CrossRefGoogle Scholar
  3. [3]
    Arnold FH (1998) Design by directed evolution. Acc Chem Res 31:125–131CrossRefGoogle Scholar
  4. [4]
    Bornscheuer UT, Huisman GW, Kazlauskas RJ et al. (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRefPubMedGoogle Scholar
  5. [5]
    Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol 3:597–611CrossRefGoogle Scholar
  6. [6]
    Hwang HT, Qi F, Yuan C et al. (2014) Lipase-catalyzed process for biodiesel production: protein engineering and lipase production. Biotechnol Bioeng 111:639–653CrossRefPubMedGoogle Scholar
  7. [7]
    Tokiwa Y, Calabia BP, Ugwu CU et al. (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Popovic A, Hai T, Tchigvintsev A et al. (2017) Activity screening of environmental metagenomic libraries reveals novel carboxylesterase families. Sci Rep 7:44103CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Jaeger KE, Eggert T (2002) Lipases for biotechnology. Curr Opin Biotechnol 13:390–397CrossRefPubMedGoogle Scholar
  10. [10]
    Classen T, Kovacic F, Lauinger B et al. (2017) Screening for enantioselective lipases. In: McGenity TJ et al. (Hrsg) Hydrocarbon and Lipid Microbiology Protocols Handbooks. Springer, Berlin, S37–69Google Scholar
  11. [11]
    Fulton A, Hayes MR, Schwaneberg U et al. (2018) Highthroughput screening assays for lipolytic enzymes. Methods Mol Biol 1685:209–231CrossRefPubMedGoogle Scholar
  12. [12]
    Janes LE, Kazlauskas RJ (1997) Quick E. A fast spectrophotometric method to measure the enantioselectivity of hydrolases. J Org Chem 62:4560–4561Google Scholar
  13. [13]
    Fulton A, Frauenkron-Machedjou VJ, Skoczinski P et al. (2015) Exploring the protein stability landscape: Bacillus subtilis lipase A as a model for detergent tolerance. ChemBioChem 16:930–936CrossRefPubMedGoogle Scholar
  14. [14]
    Rahmen N, Fulton A, Ihling N et al. (2015) Exchange of single amino acids at different positions of a recombinant protein affects metabolic burden in Escherichia coli. Microb Cell Fact 14:10CrossRefPubMedPubMedCentralGoogle Scholar
  15. [15]
    Skoczinski P, Volkenborn K, Fulton A et al. (2017) Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis. Microb Cell Fact 16:160CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Alexander Fulton
    • 1
  • Filip Kovacic
    • 1
  • Ulrich Schwaneberg
    • 2
  • Jörg Pietruszka
    • 3
    • 4
  • Karl-Erich Jaeger
    • 1
    • 4
  1. 1.Institut für Molekulare EnzymtechnologieUniversität Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
  2. 2.Lehrstuhl für Biotechnologie, RWTH AachenDüsseldorfGermany
  3. 3.Institut für Bioorganische ChemieUniversität Düsseldorf, Forschungszentrum Jülich GmbHJülichGermany
  4. 4.Institut für Bio- und Geowissenschaften, IBG-1: BiotechnologieForschungszentrum Jülich GmbHJülichGermany

Personalised recommendations