BIOspektrum

, Volume 23, Issue 7, pp 836–838 | Cite as

Enzymdiversität als Basis für die Entwicklung artifizieller Biosynthesen

Biotechnologie Biokatalyse
  • 22 Downloads

Abstract

Biocatalysis can serve as a basis for the synthesis of structurally challenging valuable compounds. The synergistic use of biological and chemical knowledge represents a fruitful approach for finding starting points in the development of novel enzymes. Several enzyme engineering techniques are nowadays available to evolve such starting activities towards tailored enzymes in artificial biochemical syntheses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Nestl BM, Nebel BA, Hauer B (2011) Recent progress in industrial biocatalysis. Curr Opin Chem Biol 15:187–193CrossRefPubMedGoogle Scholar
  2. [2]
    de Souza ROMA., Miranda LSM, Bornscheuer UT (2017) A retrosynthesis approach for biocatalysis in organic synthesis. Chemistry 23:12040–12063CrossRefPubMedGoogle Scholar
  3. [3]
    Bornscheuer UT, Huisman GW, Kazlauskas RJ et al. (2012) Engineering the third wave of biocatalysis. Nature 485:185–194CrossRefPubMedGoogle Scholar
  4. [4]
    Chica RA, Doucet N, Pelletier JN (2005) Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design. Curr Opin Biotechnol 16:378–384CrossRefPubMedGoogle Scholar
  5. [5]
    Schäfer B (2013) Menthol. Chemie unserer Zeit 47:174–182CrossRefGoogle Scholar
  6. [6]
    McCoy M (2010) Hot market for a cool chemical. Chem Eng News Arch 88:15–16Google Scholar
  7. [7]
    Leffingwell D, Leffingwell J (2011) Chiral chemistry in flavours & fragrances. Spec Chem Mag 31:30–33Google Scholar
  8. [8]
    Jiang L, Althoff EA, Clemente FR et al. (2012) De novo computational design of retro-aldol enzymes. Science 319:1387–1391CrossRefGoogle Scholar
  9. [9]
    Otte KB, Maurer E, Kirtz M et al. (2017) Synthesis of sebacic acid using a de novo designed retro-aldolase as a key catalyst. ChemCatChem 9:1378–1382CrossRefGoogle Scholar
  10. [10]
    Toogood HS, Gardiner JM, Scrutton NS (2010) Biocatalytic reductions and chemical versatility of the old yellow enzyme family of flavoprotein oxidoreductases. ChemCatChem 2:892–914CrossRefGoogle Scholar
  11. [11]
    Müller A, Hauer B, Rosche B (2007) Asymmetric alkene reduction by yeast old yellow enzymes and by a novel Zymomonas mobilis reductase. Biotechnol Bioeng 98:22–29CrossRefPubMedGoogle Scholar
  12. [12]
    Kress N, Rapp J, Hauer B (2017) Enantioselective reduction of citral isomers in NCR ene reductase: analysis of an active-site mutant library. ChemBioChem 18:717–720CrossRefPubMedGoogle Scholar
  13. [13]
    Bastian SA, Hammer SC, Kreß N et al. (2017) Enabling new selectivities in the cyclization of citronellal by squalene hopene cyclase variants. ChemCatChem, doi: 10.1002/cctc.201700734Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2017

Authors and Affiliations

  1. 1.Abteilung Technische Biochemie, Institut für Biochemie und Technische BiochemieUniversität StuttgartStuttgartDeutschland

Personalised recommendations