Advertisement

BIOspektrum

, Volume 23, Issue 7, pp 830–832 | Cite as

Tackling the numbers problem: Entwicklung nicht-nativer Enzymreaktionen

  • Michelle Kammel
  • Anja Knorrscheidt
  • Pascal Püllmann
  • Martin J. Weissenborn
Biotechnologie Biokatalyse

Abstract

The screening effort of large protein variant libraries renders the probability of coincidental discovering a new enzyme with non-natural activity to almost zero - the so-called numbers problem. Insights into the origin of life, evolution and enzymatic promiscuity, combined with the inspiration of methods from organic chemistry, offer solutions for this problem. With the newly discovered enzymes synthetic micro production units shall be established in a Leibniz Research Cluster where engineering and biotechnology are combined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Muller M, Gocke D, Pohl M (2009) Thiamin diphosphate in biological chemistry: exploitation of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic synthesis. FEBS J 276:2894–2904CrossRefPubMedGoogle Scholar
  2. [2]
    Baba S, Negishi E (1976) A novel stereospecific alkenylalkenyl cross-coupling by a palladium- or nickel-catalyzed reaction of alkenylalanes with alkenyl halides. J Am Chem Soc 98:6729–6731CrossRefGoogle Scholar
  3. [3]
    Jeschek M, Reuter R, Heinisch T et al. (2016) Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537:661–665CrossRefPubMedGoogle Scholar
  4. [4]
    Weissenborn MJ, Low SA, Borlinghaus N et al. (2016) Enzyme-catalyzed carbonyl olefination by the E. coli protein YfeX in the absence of phosphines. ChemCatChem 8:1636–1640CrossRefGoogle Scholar
  5. [5]
    Currin A, Swainston N, Day PJ et al. (2015) Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 44:1172–1239CrossRefPubMedGoogle Scholar
  6. [6]
    Fox SW (1974) Proteinoid theory of origin of life and competing ideas. Am Biol Teach 36:161–168CrossRefGoogle Scholar
  7. [7]
    Neme R, Amador C, Yildirim B et al. (2017) Random sequences are an abundant source of bioactive RNAs or peptides. Nat Ecol Evol 1:0217CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Meinhold P, Peters MW, Chen MM et al. (2005) Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3. ChemBioChem 6:1765–1768CrossRefPubMedGoogle Scholar
  9. [9]
    Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505CrossRefPubMedGoogle Scholar
  10. [10]
    Bhowmick A, Brookes DH, Yost SR et al. (2016) Finding our way in the dark proteome. J Am Chem Soc 138:9730–9742CrossRefPubMedPubMedCentralGoogle Scholar
  11. [11]
    Kitagawa M, Ara T, Arifuzzaman M et al. (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299CrossRefPubMedGoogle Scholar
  12. [12]
    Taylor SV, Kast P, Hilvert D (2001) Investigating and engineering enzymes by genetic selection. Angew Chem Int Ed Engl 40:3310–3335CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2017

Authors and Affiliations

  • Michelle Kammel
    • 1
    • 2
  • Anja Knorrscheidt
    • 1
    • 2
  • Pascal Püllmann
    • 1
    • 2
  • Martin J. Weissenborn
    • 1
    • 2
  1. 1.Junior Research Group Bioorganic ChemistryLeibniz-Institut für Pflanzenbiochemie (IPB) & Universität Halle-WittenbergHalle (Saale)Deutschland
  2. 2.Institut für ChemieUniversität Halle-WittenbergHalleDeutschland

Personalised recommendations