BIOspektrum

, Volume 23, Issue 7, pp 769–771 | Cite as

Engineering von intrazellulären Modulatoren

Wissenschaft · Methoden Protein-Protein-Interaktionen
  • 13 Downloads

Abstract

The engineering of affinity reagents has become a standard technology in modern drug development efforts. High-throughput screening of recombinant protein libraries has yielded numerous affinity reagents that are used in diagnostic or therapeutic applications. In our approach, we engineer intracellular affinity reagents by enhancing pre-existing intermolecular contacts to target functional epitopes in proteins. The designed affinity reagents allow a fast and specific interrogation of druggable sites in therapeutic relevant proteins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693CrossRefPubMedGoogle Scholar
  2. [2]
    Rolland T, Tasan M, Charloteaux B, et al. (2014) A proteome-scale map of the human interactome network. Cell 159:1212–1226CrossRefPubMedPubMedCentralGoogle Scholar
  3. [3]
    Argos P (1988) An investigation of protein subunit and domain interfaces. Protein Eng 2:101–113CrossRefPubMedGoogle Scholar
  4. [4]
    Vajda S, Guarnieri F (2006) Characterization of protein-ligand interaction sites using experimental and computational methods. Curr Opin Drug Discov Devel 9:354–362PubMedGoogle Scholar
  5. [5]
    Tomlinson IM (2004) Next-generation protein drugs. Nat Biotechnol 22:521–522CrossRefPubMedGoogle Scholar
  6. [6]
    Koide A, Abbatiello S, Rothgery L, et al. (2002) Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. Proc Natl Acad Sci USA 99:1253–1258CrossRefPubMedPubMedCentralGoogle Scholar
  7. [7]
    Binz HK, Amstutz P, Kohl A, et al. (2004) High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol 22:575–582CrossRefPubMedGoogle Scholar
  8. [8]
    Ernst A, Avvakumov G, Tong J, et al. (2013) A strategy for modulation of enzymes in the ubiquitin system. Science 339:590–595CrossRefPubMedGoogle Scholar
  9. [9]
    Liu F, Walters KJ (2010) Multitasking with ubiquitin through multivalent interactions. Trends Biochem Sci 35:352–360CrossRefPubMedPubMedCentralGoogle Scholar
  10. [10]
    Zhang D, Raasi S, Fushman D (2008) Affinity makes the difference: nonselective interaction of the UBA domain of Ubiquilin-1 with monomeric ubiquitin and polyubiquitin chains. J Mol Biol 377:162–180CrossRefPubMedGoogle Scholar
  11. [11]
    Wiechmann S, Gartner A, Kniss A, et al. (2017) Site-specific inhibition of the SUMO-conjugating enzyme Ubc9 selectively impairs SUMO chain formation. J Biol Chem, DOI:10.1074/ibc.M117.794255Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2017

Authors and Affiliations

  1. 1.Institut für Biochemie IIGoethe Universität Frankfurt, Fachbereich Medizin und Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie, Projektgruppe Translationale Medizin und Pharmakologie.Frankfurt a. M.Deutschland

Personalised recommendations