Advertisement

BIOspektrum

, Volume 23, Issue 7, pp 748–751 | Cite as

Redoxbiochemie des genetischen Codes

  • Bernd Moosmann
Wissenschaft Molekulare Evolution
  • 38 Downloads

Abstract

Recent research on the quantum chemistry of the amino acids and on the temporal order of their ancient introduction into the genetic code has yielded the surprising finding that the amino acids have become system-atically softer (i. a. meaning more redox reactive) during evolution. This trend is recapitulated by recent innovations in organelle genetic codes found in present-day animals. Thus, aspects of chemical reactivity rather than three-dimensional structure optimization governed the finalization of the modern genetic code.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Koonin EV, Novozhilov AS (2009) Origin and evolution of the genetic code: the universal enigma. IUBMB Life 61:99–111CrossRefPubMedPubMedCentralGoogle Scholar
  2. [2]
    Longo LM, Blaber M (2012) Protein design at the interface of the pre-biotic and biotic worlds. Arch Biochem Biophys 526:16–21CrossRefPubMedGoogle Scholar
  3. [3]
    Trifonov EN (2009) The origin of the genetic code and of the earliest oligopeptides. Res Microbiol 160:481–486CrossRefPubMedGoogle Scholar
  4. [4]
    Granold M (2015) Die Bedeutung von molekularem Sauerstoff für die Evolution des genetischen Codes. Dissertation, Universität MainzGoogle Scholar
  5. [5]
    Bender A, Hajieva P, Moosmann B (2008) Adaptive antioxidant methionine accumulation in respiratory chain complexes explains the use of a deviant genetic code in mitochondria. Proc Natl Acad Sci USA 105:16496–16501CrossRefPubMedPubMedCentralGoogle Scholar
  6. [6]
    Schindeldecker M, Moosmann B (2015) Protein-borne methionine residues as structural antioxidants in mitochondria. Amino Acids 47:1421–1432CrossRefPubMedGoogle Scholar
  7. [7]
    Levine RL, Mosoni L, Berlett BS et al. (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci USA 93:15036–15040CrossRefPubMedPubMedCentralGoogle Scholar
  8. [8]
    Gray HB, Winkler JR (2015) Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage. Proc Natl Acad Sci USA 112:10920–10925CrossRefPubMedPubMedCentralGoogle Scholar
  9. [9]
    Hajieva P, Bayatti N, Granold M et al. (2015) Membrane protein oxidation determines neuronal degeneration. J Neurochem 133:352–367CrossRefPubMedGoogle Scholar
  10. [10]
    Lyons TW, Reinhard CT, Planavsky NJ (2014) The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506:307–315CrossRefPubMedGoogle Scholar
  11. [11]
    Yang XL, Otero FJ, Skene RJ et al. (2003) Crystal structures that suggest late development of genetic code components for differentiating aromatic side chains. Proc Natl Acad Sci USA 100:15376–15380CrossRefPubMedPubMedCentralGoogle Scholar
  12. [12]
    Jones TE, Ribas de Pouplana L, Alexander RW (2013) Evidence for late resolution of the AUX codon box in evolution. J Biol Chem 288:19625–19632CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2017

Authors and Affiliations

  1. 1.Evolutionäre Biochemie und Redoxmedizin, Institut für PathobiochemieUniversitätsmedizin der Universität MainzMainzDeutschland

Personalised recommendations