Admission Low-Density Lipoprotein Cholesterol Stratified by Circulating CD14++CD16+ Monocytes and Risk for Recurrent Cardiovascular Events Following ST Elevation Myocardial Infarction: Lipid Paradox Revised

Abstract

Lower level of low-density lipoprotein cholesterol (LDL-C) is paradoxically associated with increased mortality in ST elevation myocardial infarction (STEMI) patients. The underlying mechanism remains unclear. In a cohort of 220 de novo STEMI patients receiving timely primary percutaneous coronary intervention, admission LDL-C was negatively associated with circulating CD14++CD16+ monocyte counts. Moreover, admission LDL-C < 85 mg/dL was associated with increased risk for major adverse cardiovascular events (MACE) during a median follow-up of 2.7 years. After categorizing the patients according to the cutoff values of 85 mg/dL for LDL-C and the median for CD14++CD16+ monocytes, low LDL-C-associated MACE risk was only observed in those with high CD14++CD16+ monocyte counts (low LDL-C/high CD14++CD16+ monocytes vs. low LDL-C/low CD14++CD16+ monocytes: hazard ratio 5.38, 95% confidence interval 1.52 to 19.06, P = 0.009). This work provided the proof-of-principle evidence indicating a role of CD14++CD16+ monocytes in risk stratification of STEMI patients presenting with low LDL-C level.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

ACS:

Acute coronary syndrome

ASCVD:

Atherosclerotic cardiovascular disease

CANTOS:

Canakinumab anti-inflammatory thrombosis outcomes study

COLCOT:

Colchicine cardiovascular outcomes trial

ELISA:

Enzyme-linked immunosorbent assay

FITC:

Fluorescein isothiocyanate

hsCRP:

High sensitivity C-reactive protein

LDL-C:

Low-density lipoprotein cholesterol

LVEF:

Left ventricular ejection fraction

MACE:

Major adverse cardiovascular events

MI:

Myocardial infarction

NSTEMI:

Non-ST elevation myocardial infarction

PCI:

Percutaneous coronary intervention

PE:

Phycoerythrin

STEMI:

ST elevation myocardial infarction

References

  1. 1.

    Cholesterol Treatment Trialists Collaboration, Baigent, C., Blackwell, L., Emberson, J., Holland, L. E., Reith, C., et al. (2010). Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet, 376(9753), 1670–1681.

    Google Scholar 

  2. 2.

    Cholesterol Treatment Trialists Collaboration, Fulcher, J., O'Connell, R., Voysey, M., Emberson, J., Blackwell, L., et al. (2015). Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet, 385(9976), 1397–1405.

    Google Scholar 

  3. 3.

    Heeschen, C., Hamm, C. W., Laufs, U., Snapinn, S., Bohm, M., White, H. D., et al. (2002). Withdrawal of statins increases event rates in patients with acute coronary syndromes. Circulation, 105(12), 1446–1452.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Spencer, F. A., Allegrone, J., Goldberg, R. J., Gore, J. M., Fox, K. A., Granger, C. B., et al. (2004). Association of statin therapy with outcomes of acute coronary syndromes: the grace study. Annals of Internal Medicine, 140(11), 857–866.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Cho, K. H., Jeong, M. H., Ahn, Y., Kim, Y. J., Chae, S. C., Hong, T. J., et al. (2010). Low-density lipoprotein cholesterol level in patients with acute myocardial infarction having percutaneous coronary intervention (the cholesterol paradox). The American Journal of Cardiology, 106(8), 1061–1068.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Nozue, T. (2016). Low-density lipoprotein cholesterol level and statin therapy in patients with acute myocardial infarction (cholesterol paradox). Circulation Journal, 80(2), 323–324.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Wang, T. Y., Newby, L. K., Chen, A. Y., Mulgund, J., Roe, M. T., Sonel, A. F., et al. (2009). Hypercholesterolemia paradox in relation to mortality in acute coronary syndrome. Clinical Cardiology, 32(9), E22–E28.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Reddy, V. S., Bui, Q. T., Jacobs, J. R., Begelman, S. M., Miller, D. P., French, W. J., et al. (2015). Relationship between serum low-density lipoprotein cholesterol and in-hospital mortality following acute myocardial infarction (the lipid paradox). The American Journal of Cardiology, 115(5), 557–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Weber, C., Shantsila, E., Hristov, M., Caligiuri, G., Guzik, T., Heine, G. H., et al. (2016). Role and analysis of monocyte subsets in cardiovascular disease. Joint consensus document of the European Society of Cardiology (ESC) working groups “atherosclerosis & vascular biology” and “thrombosis”. Thrombosis and Haemostasis, 116(4), 626–637.

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Maekawa, Y., Anzai, T., Yoshikawa, T., Asakura, Y., Takahashi, T., Ishikawa, S., et al. (2002). Prognostic significance of peripheral monocytosis after reperfused acute myocardial infarction: a possible role for left ventricular remodeling. Journal of the American College of Cardiology, 39(2), 241–246.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Tapp, L. D., Shantsila, E., Wrigley, B. J., Pamukcu, B., & Lip, G. Y. (2012). The CD14++CD16+ monocyte subset and monocyte-platelet interactions in patients with ST-elevation myocardial infarction. Journal of Thrombosis and Haemostasis, 10(7), 1231–1241.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Shantsila, E., Ghattas, A., Griffiths, H. R., & Lip, G. Y. H. (2019). Mon2 predicts poor outcome in ST-elevation myocardial infarction. Journal of Internal Medicine, 285(3), 301–316.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Zhou, X., Liu, X. L., Ji, W. J., Liu, J. X., Guo, Z. Z., Ren, D., et al. (2016). The kinetics of circulating monocyte subsets and monocyte-platelet aggregates in the acute phase of ST-elevation myocardial infarction: associations with 2-year cardiovascular events. Medicine, 95(18), e3466.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Zeng, S., Yan, L. F., Luo, Y. W., Liu, X. L., Liu, J. X., Guo, Z. Z., et al. (2018). Trajectories of circulating monocyte subsets after ST-elevation myocardial infarction during hospitalization: latent class growth modeling for high-risk patient identification. Journal of Cardiovascular Translational Research, 11(1), 22–32.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zhou, X., Li, J., Guo, J., Geng, B., Ji, W., Zhao, Q., et al. (2018). Gut-dependent microbial translocation induces inflammation and cardiovascular events after ST-elevation myocardial infarction. Microbiome, 6(1), 66.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Ridker, P. M., Everett, B. M., Thuren, T., MacFadyen, J. G., Chang, W. H., Ballantyne, C., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377(12), 1119–1131.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Tardif, J. C., Kouz, S., Waters, D. D., Bertrand, O. F., Diaz, R., Maggioni, A. P., et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. The New England Journal of Medicine, 381(26), 2497–2505.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Zuurbier, C. J., Abbate, A., Cabrera-Fuentes, H. A., Cohen, M. V., Collino, M., De Kleijn, D. P. V., et al. (2019). Innate immunity as a target for acute cardioprotection. Cardiovascular Research, 115(7), 1131–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Azzam, K. M., & Fessler, M. B. (2012). Crosstalk between reverse cholesterol transport and innate immunity. Trends in Endocrinology and Metabolism, 23(4), 169–178.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Task Force on the management of ST segment elevation acute myocardial infarction of the European Society of Cardiology, Steg, P. G., James, S. K., Atar, D., Badano, L. P., Blomstrom-Lundqvist, C., et al. (2012). ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart Journal, 33(20), 2569–2619.

    Google Scholar 

  21. 21.

    Chinese Society of Cardiology. (2012). Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Chinese Journal of Cardiology, 40(5), 353–367.

    Google Scholar 

  22. 22.

    Zhou, X., Zhang, L., Ji, W. J., Yuan, F., Guo, Z. Z., Pang, B., et al. (2013). Variation in dietary salt intake induces coordinated dynamics of monocyte subsets and monocyte-platelet aggregates in humans: implications in end organ inflammation. PLoS One, 8(4), e60332.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Ma, Y. C., Zuo, L., Chen, J. H., Luo, Q., Yu, X. Q., Li, Y., et al. (2006). Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. Journal of the American Society of Nephrology, 17(10), 2937–2944.

    PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lu, Y. W., Lu, S. F., Chou, R. H., Wu, P. S., Ku, Y. C., Kuo, C. S., et al. (2019). Lipid paradox in patients with acute myocardial infarction: potential impact of malnutrition. Clinical Nutrition, 38(5), 2311–2318.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Ravnskov, U., Diamond, D. M., Hama, R., Hamazaki, T., Hammarskjold, B., Hynes, N., et al. (2016). Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review. BMJ Open, 6(6), e010401.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Myasoedova, E., Crowson, C. S., Kremers, H. M., Roger, V. L., Fitz-Gibbon, P. D., Therneau, T. M., et al. (2011). Lipid paradox in rheumatoid arthritis: the impact of serum lipid measures and systemic inflammation on the risk of cardiovascular disease. Annals of the Rheumatic Diseases, 70(3), 482–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Robertson, J., Peters, M. J., McInnes, I. B., & Sattar, N. (2013). Changes in lipid levels with inflammation and therapy in RA: a maturing paradigm. Nature Reviews Rheumatology, 9(9), 513–523.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Avina-Zubieta, J. A., Thomas, J., Sadatsafavi, M., Lehman, A. J., & Lacaille, D. (2012). Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Annals of the Rheumatic Diseases, 71(9), 1524–1529.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Oduncu, V., Erkol, A., Kurt, M., Tanboga, I. H., Karabay, C. Y., Sengul, C., et al. (2013). The prognostic value of very low admission LDL-cholesterol levels in ST-segment elevation myocardial infarction compared in statin-pretreated and statin-naive patients undergoing primary percutaneous coronary intervention. International Journal of Cardiology, 167(2), 458–463.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ridker, P. M. (2017). How common is residual inflammatory risk? Circulation Research, 120(4), 617–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Guedeney, P., Claessen, B. E., Kalkman, D. N., Aquino, M., Sorrentino, S., Giustino, G., et al. (2019). Residual inflammatory risk in patients with low LDL cholesterol levels undergoing percutaneous coronary intervention. Journal of the American College of Cardiology, 73(19), 2401–2409.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Penson, P. E., Long, D. L., Howard, G., Toth, P. P., Muntner, P., Howard, V. J., et al. (2018). Associations between very low concentrations of low density lipoprotein cholesterol, high sensitivity c-reactive protein, and health outcomes in the reasons for geographical and racial differences in stroke (REGARDS) study. European Heart Journal, 39(40), 3641–3653.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Bohula, E. A., Giugliano, R. P., Leiter, L. A., Verma, S., Park, J. G., Sever, P. S., et al. (2018). Inflammatory and cholesterol risk in the FOURIER trial. Circulation, 138(2), 131–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Vreugdenhil, A. C., Rousseau, C. H., Hartung, T., Greve, J. W., van ‘t Veer, C., & Buurman, W. A. (2003). Lipopolysaccharide (LPS)-binding protein mediates LPS detoxification by chylomicrons. Journal of Immunology, 170(3), 1399–1405.

    CAS  Google Scholar 

  35. 35.

    Feng, Q., Wei, W. Q., Chaugai, S., Leon, B. G. C., Mosley, J. D., Leon, D. A. C., et al. (2019). Association between low-density lipoprotein cholesterol levels and risk for sepsis among patients admitted to the hospital with infection. JAMA Network Open, 2(1), e187223.

    PubMed  PubMed Central  Google Scholar 

  36. 36.

    Kaysen, G. A., Ye, X., Raimann, J. G., Wang, Y., Topping, A., Usvyat, L. A., et al. (2018). Lipid levels are inversely associated with infectious and all-cause mortality: international mondo study results. Journal of Lipid Research, 59(8), 1519–1528.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Baartscheer, A., Schumacher, C. A., Wekker, V., Verkerk, A. O., Veldkamp, M. W., van Oort, R. J., et al. (2015). Dyscholesterolemia protects against ischemia-induced ventricular arrhythmias. Circulation. Arrhythmia and Electrophysiology, 8(6), 1481–1490.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Dekker, L. R., Bezzina, C. R., Henriques, J. P., Tanck, M. W., Koch, K. T., Alings, M. W., et al. (2006). Familial sudden death is an important risk factor for primary ventricular fibrillation: a case-control study in acute myocardial infarction patients. Circulation, 114(11), 1140–1145.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Li, M., Huang, Y., Du, X., Li, S., Ji, J., Patel, A., et al. (2016). Impact of prior use of four preventive medications on outcomes in patients hospitalized for acute coronary syndrome--results from CPACS-2 study. PLoS One, 11(9), e0163068.

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Imanishi, T., Ikejima, H., Tsujioka, H., Kuroi, A., Ishibashi, K., Komukai, K., et al. (2010). Association of monocyte subset counts with coronary fibrous cap thickness in patients with unstable angina pectoris. Atherosclerosis, 212(2), 628–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Ammirati, E., Cannistraci, C. V., Cristell, N. A., Vecchio, V., Palini, A. G., Tornvall, P., et al. (2012). Identification and predictive value of interleukin-6+ interleukin-10+ and interleukin-6- interleukin-10+ cytokine patterns in ST-elevation acute myocardial infarction. Circulation Research, 111(10), 1336–1348.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Foster, G. A., Gower, R. M., Stanhope, K. L., Havel, P. J., Simon, S. I., & Armstrong, E. J. (2013). On-chip phenotypic analysis of inflammatory monocytes in atherogenesis and myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81970304) and Tianjin Municipal Science and Technology Commission (18ZXZNSY00290).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Xin Zhou or Qing Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Subjects

All procedures followed were in accordance with the ethical standards of the Ethical Committee of Pingjin Hospital on human experimentation and with the Helsinki Declaration of 1975, as revised in 2000.

Informed Consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Junjie Xiao oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dong, S., Ji, W., Zeng, S. et al. Admission Low-Density Lipoprotein Cholesterol Stratified by Circulating CD14++CD16+ Monocytes and Risk for Recurrent Cardiovascular Events Following ST Elevation Myocardial Infarction: Lipid Paradox Revised. J. of Cardiovasc. Trans. Res. 13, 916–927 (2020). https://doi.org/10.1007/s12265-020-10015-6

Download citation

Keywords

  • Low-density lipoprotein cholesterol
  • ST elevation myocardial infarction
  • Monocyte subsets
  • Prognosis
  • Lipid paradox