Effects of Colchicine on Atherosclerotic Plaque Stabilization: a Multimodality Imaging Study in an Animal Model


Colchicine demonstrated clinical benefits in the treatment of stable coronary artery disease. Our aim was to evaluate the effects of colchicine on atherosclerotic plaque stabilization. Atherosclerosis was induced in the abdominal aorta of 20 rabbits with high-cholesterol diet and balloon endothelial denudation. Rabbits were randomized to receive either colchicine or placebo. All animals underwent MRI, 18F-FDG PET/CT, optical coherence tomography (OCT), and histology. Similar progression of atherosclerotic burden was observed in the two groups as relative increase of normalized wall index (NWI). Maximum 18F-FDG standardized uptake value (meanSUVmax) decreased after colchicine treatment, while it increased in the placebo group with a trend toward significance. Animals with higher levels of cholesterol showed significant differences in favor to colchicine group, both as NWI at the end of the protocol and as relative increase in meanSUVmax. Colchicine may stabilize atherosclerotic plaque by reducing inflammatory activity and plaque burden, without altering macrophage infiltration or plaque typology.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6



18F-Fluorodeoxyglucose integrated with computed tomography


Magnetic resonance imaging


Normalized wall index


Optical coherence tomography


Standardized uptake values


  1. 1.

    Tousoulis, D., et al. (2016). Inflammatory cytokines in atherosclerosis: current therapeutic approaches. European Heart Journal, 37(22), 1723–1732.

    CAS  PubMed  Google Scholar 

  2. 2.

    Libby, P. (2012). Inflammation in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32(9), 2045–2051.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Naruko, T., et al. (2002). Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 106(23), 2894–2900.

    PubMed  Google Scholar 

  4. 4.

    Vacek, T. P., et al. (2015). Matrix metalloproteinases in atherosclerosis: role of nitric oxide, hydrogen sulfide, homocysteine, and polymorphisms. Vascular Health and Risk Management, 11, 173–183.

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Peters, M. J., et al. (2009). Does rheumatoid arthritis equal diabetes mellitus as an independent risk factor for cardiovascular disease? A prospective study. Arthritis and Rheumatism, 61(11), 1571–1579.

    PubMed  Google Scholar 

  6. 6.

    Ridker, P. M. (2014). Inflammation, C-reactive protein, and cardiovascular disease: moving past the marker versus mediator debate. Circulation Research, 114(4), 594–595.

    CAS  PubMed  Google Scholar 

  7. 7.

    Moreno, P. R., & Kini, A. (2012). Resolution of inflammation, statins, and plaque regression. JACC: Cardiovascular Imaging, 5(2), 178–181.

    PubMed  Google Scholar 

  8. 8.

    Ridker, P. M., et al. (2017). Antiinflammatory therapy with canakinumab for atherosclerotic disease. The New England Journal of Medicine, 377(12), 1119–1131.

    CAS  PubMed  Google Scholar 

  9. 9.

    Ridker, P. M., et al. (2019). Low-dose methotrexate for the prevention of atherosclerotic events. The New England Journal of Medicine, 380(8), 752–762.

    CAS  PubMed  Google Scholar 

  10. 10.

    Pan, W., et al. (2019). Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 28–36.

    PubMed  Google Scholar 

  11. 11.

    Leung, Y. Y., Yao Hui, L. L., & Kraus, V. B. (2015). Colchicine—update on mechanisms of action and therapeutic uses. Seminars in Arthritis and Rheumatism, 45(3), 341–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Crittenden, D. B., et al. (2012). Colchicine use is associated with decreased prevalence of myocardial infarction in patients with gout. The Journal of Rheumatology, 39(7), 1458–1464.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Langevitz, P., et al. (2001). Prevalence of ischemic heart disease in patients with familial Mediterranean fever. The Israel Medical Association Journal, 3(1), 9–12.

    CAS  PubMed  Google Scholar 

  14. 14.

    Nidorf, S. M., et al. (2013). Low-dose colchicine for secondary prevention of cardiovascular disease. Journal of the American College of Cardiology, 61(4), 404–410.

    CAS  PubMed  Google Scholar 

  15. 15.

    Nidorf, S. M., et al. (2019). The effect of low-dose colchicine in patients with stable coronary artery disease: the LoDoCo2 trial rationale, design, and baseline characteristics. American Heart Journal, 218, 46–56.

    CAS  PubMed  Google Scholar 

  16. 16.

    Deftereos, S., et al. (2013). Colchicine treatment for the prevention of bare-metal stent restenosis in diabetic patients. Journal of the American College of Cardiology, 61(16), 1679–1685.

    CAS  PubMed  Google Scholar 

  17. 17.

    Tardif, J. C., et al. (2019). Efficacy and safety of low-dose colchicine after myocardial infarction. The New England Journal of Medicine, 381(26), 2497–2505.

    CAS  PubMed  Google Scholar 

  18. 18.

    Bhattacharyya, B., et al. (2008). Anti-mitotic activity of colchicine and the structural basis for its interaction with tubulin. Medicinal Research Reviews, 28(1), 155–183.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ganguly, A., et al. (2013). Microtubule dynamics control tail retraction in migrating vascular endothelial cells. Molecular Cancer Therapeutics, 12(12), 2837–2846.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Paschke, S., et al. (2013). Technical advance: inhibition of neutrophil chemotaxis by colchicine is modulated through viscoelastic properties of subcellular compartments. Journal of Leukocyte Biology, 94(5), 1091–1096.

    CAS  PubMed  Google Scholar 

  21. 21.

    Peachman, K. K., et al. (2004). Functional microtubules are required for antigen processing by macrophages and dendritic cells. Immunology Letters, 95(1), 13–24.

    CAS  PubMed  Google Scholar 

  22. 22.

    Sullivan, D. P., & Muller, W. A. (2014). Neutrophil and monocyte recruitment by PECAM, CD99, and other molecules via the LBRC. Seminars in Immunopathology, 36(2), 193–209.

    CAS  PubMed  Google Scholar 

  23. 23.

    Martinon, F., et al. (2006). Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature, 440(7081), 237–241.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Pope, R. M., & Tschopp, J. (2007). The role of interleukin-1 and the inflammasome in gout: implications for therapy. Arthritis and Rheumatism, 56(10), 3183–3188.

    CAS  PubMed  Google Scholar 

  25. 25.

    Cimmino, G., et al. (2018). Colchicine reduces platelet aggregation by modulating cytoskeleton rearrangement via inhibition of cofilin and LIM domain kinase 1. Vascular Pharmacology, 111, 62–70.

    CAS  PubMed  Google Scholar 

  26. 26.

    Phinikaridou, A., et al. (2009). A robust rabbit model of human atherosclerosis and atherothrombosis. Journal of Lipid Research, 50(5), 787–797.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Phinikaridou, A., et al. (2010). In vivo detection of vulnerable atherosclerotic plaque by MRI in a rabbit model. Circulation. Cardiovascular Imaging, 3(3), 323–332.

    PubMed  Google Scholar 

  28. 28.

    Schroeder, S., et al. (2001). Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. Journal of the American College of Cardiology, 37(5), 1430–1435.

    CAS  PubMed  Google Scholar 

  29. 29.

    Yla-Herttuala, S., et al. (2013). Stabilization of atherosclerotic plaques: an update. European Heart Journal, 34(42), 3251–3258.

    PubMed  Google Scholar 

  30. 30.

    Stone, G. W., et al. (2011). A prospective natural-history study of coronary atherosclerosis. The New England Journal of Medicine, 364(3), 226–235.

    CAS  PubMed  Google Scholar 

  31. 31.

    Naghavi, M., et al. (2003). From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part II. Circulation, 108(15), 1772–1778.

    PubMed  Google Scholar 

  32. 32.

    Arbab-Zadeh, A., & Fuster, V. (2015). The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. Journal of the American College of Cardiology, 65(8), 846–855.

    PubMed  PubMed Central  Google Scholar 

  33. 33.

    Chiu, B., et al. (2011). Fast plaque burden assessment of the femoral artery using 3D black-blood MRI and automated segmentation. Medical Physics, 38(10), 5370–5384.

    PubMed  PubMed Central  Google Scholar 

  34. 34.

    Kantor, B., et al. (2009). Coronary computed tomography and magnetic resonance imaging. Current Problems in Cardiology, 34(4), 145–217.

    PubMed  PubMed Central  Google Scholar 

  35. 35.

    Vaidya, K., et al. (2018). Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC: Cardiovascular Imaging, 11(2 Pt 2), 305–316.

    PubMed  Google Scholar 

  36. 36.

    Bauriedel, G., et al. (1994). Colchicine antagonizes the activity of human smooth muscle cells cultivated from arteriosclerotic lesions after atherectomy. Coronary Artery Disease, 5(6), 531–539.

    CAS  PubMed  Google Scholar 

  37. 37.

    Tatsumi, M., et al. (2003). Fluorodeoxyglucose uptake in the aortic wall at PET/CT: possible finding for active atherosclerosis. Radiology, 229(3), 831–837.

    PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tawakol, A., et al. (2005). Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. Journal of Nuclear Cardiology, 12(3), 294–301.

    PubMed  Google Scholar 

  39. 39.

    Ishii, H., et al. (2010). Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention. Clinical Therapeutics, 32(14), 2337–2347.

    CAS  PubMed  Google Scholar 

  40. 40.

    Vucic, E., et al. (2011). Pioglitazone modulates vascular inflammation in atherosclerotic rabbits noninvasive assessment with FDG-PET-CT and dynamic contrast-enhanced MR imaging. JACC: Cardiovascular Imaging, 4(10), 1100–1109.

    PubMed  Google Scholar 

  41. 41.

    Martinez, G. J., Celermajer, D. S., & Patel, S. (2018). The NLRP3 inflammasome and the emerging role of colchicine to inhibit atherosclerosis-associated inflammation. Atherosclerosis, 269, 262–271.

    CAS  PubMed  Google Scholar 

  42. 42.

    Martinez, G. J., et al. (2015). Colchicine acutely suppresses local cardiac production of inflammatory cytokines in patients with an acute coronary syndrome. Journal of the American Heart Association, 4(8), e002128.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Yabushita, H., et al. (2002). Characterization of human atherosclerosis by optical coherence tomography. Circulation, 106(13), 1640–1645.

    PubMed  Google Scholar 

  44. 44.

    Rodriguez-Granillo, G. A., et al. (2005). New insights towards catheter-based identification of vulnerable plaque. Revista Española de Cardiología, 58(10), 1197–1206.

    PubMed  Google Scholar 

  45. 45.

    Puri, R., et al. (2015). Impact of statins on serial coronary calcification during atheroma progression and regression. Journal of the American College of Cardiology, 65(13), 1273–1282.

    CAS  PubMed  Google Scholar 

  46. 46.

    Kaminiotis, V. V., et al. (2017). Per os colchicine administration in cholesterol fed rabbits: triglycerides lowering effects without affecting atherosclerosis progress. Lipids in Health and Disease, 16(1), 184.

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Wojcicki, J., et al. (1986). The effect of colchicine on the development of experimental atherosclerosis in rabbits. Polish Journal of Pharmacology and Pharmacy, 38(4), 343–348.

    CAS  PubMed  Google Scholar 

  48. 48.

    Brooks, P. M., Burton, D., & Forrest, M. J. (1987). Crystal-induced inflammation in the rat subcutaneous air-pouch. British Journal of Pharmacology, 90(2), 413–419.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Maduri, S., & Atla, V. R. (2012). Formulation of colchicine ointment for the treatment of acute gout. Singapore Medical Journal, 53(11), 750–754.

    PubMed  Google Scholar 

  50. 50.

    Marcovici, I., et al. (1993). Colchicine and post-inflammatory adhesions in a rabbit model: a dose-response study. Obstetrics and Gynecology, 82(2), 216–218.

    CAS  PubMed  Google Scholar 

  51. 51.

    Angelidis, C., et al. (2018). Colchicine pharmacokinetics and mechanism of action. Current Pharmaceutical Design, 24(6), 659–663.

    CAS  PubMed  Google Scholar 

Download references


This work was supported by a grant from the Sociedad Española de Cardiología, a grant from the Instituto de Salud Carlos III of Spain and Fondo Europeo de Desarrollo Regional (FEDER, “Una manera de hacer Europa”) (FIS-FEDER PI14-01427 to J. Mateo) and a grant from Fundación BBVA to J. Ruiz-Cabello. The CNIC is supported by the Instituto de Salud Carlos III, the Ministry of Science and Innovation and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). CIC biomaGUNE is supported by the Spanish State Research Agency of MICIN under the María de Maeztu Units of Excellence Program from MDM-2017-0720.

Author information



Corresponding author

Correspondence to Borja Ibañez.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors. All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Associate Editor Paul J. R. Barton oversaw the review of this article

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cecconi, A., Vilchez-Tschischke, J.P., Mateo, J. et al. Effects of Colchicine on Atherosclerotic Plaque Stabilization: a Multimodality Imaging Study in an Animal Model. J. of Cardiovasc. Trans. Res. 14, 150–160 (2021). https://doi.org/10.1007/s12265-020-09974-7

Download citation


  • Imaging
  • Atherosclerosis
  • Animal model
  • Colchicine
  • Inflammation
  • Plaque morphology