Skip to main content

Advertisement

Log in

Gender Differences in Prognostic Markers of All-Cause Death in Patients with Acute Heart Failure: a Prospective 18-Month Follow-Up Study

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Acute heart failure (AHF) is a life-threatening condition with poor prognosis. Gender differences have been increasingly recognized in diverse cardiovascular diseases. The present study aimed to evaluate gender-specific prognostic markers of all-cause death in AHF patients based on a prospective 18-month follow-up study. Data were collected from 419 patients with AHF hospitalization who were followed up for 18 months using all-cause death as primary endpoint. The mean age of all patients was 60.9 ± 15.7 years old, 277 were males, and 142 were females. Females had higher rate of valvular heart disease (37.3%) and atrial fibrillation (45.8%) but lower rate of cardiomyopathy (30.3%) than males in this cohort. Based on multiple COX stepwise regression and ROC curve analysis, diastolic blood pressure (DBP), serum sodium, serum creatinine, and pulmonary artery systolic pressure (PASP) were identified as independent predictors of all-cause death in male AHF patients, while systolic blood pressure (SBP), serum aspartate transaminase (AST), serum creatinine, and serum D-dimer as independent predictors in females. Kaplan-Meier analysis showed a higher probability of all-cause death over time in male AHF patients with DBP ≤ 77 mmHg, serum sodium ≤ 138.5 mM, serum creatinine ≥ 126.2 μM, or PASP ≥ 52 mmHg, and in female AHF patients with SBP ≤ 129 mmHg, serum AST > 29.3 U/L, serum creatinine ≥ 102.7 μM, or serum D-dimer ≥ 1.76 mg/L. In conclusion, these data provide novel insights into gender differences in prognostic markers of outcomes of AHF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, A. J., et al. (2016). 2016 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. European Journal of Heart Failure, 18(8), 891–975.

    PubMed  Google Scholar 

  2. Mosterd, A., & Hoes, A. W. (2007). Clinical epidemiology of heart failure. Heart, 93(9), 1137–1146.

    PubMed  PubMed Central  Google Scholar 

  3. Kurmani, S., & Squire, I. (2017). Acute heart failure: definition, classification and epidemiology. Current Heart Failure Reports, 14(5), 385–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Adams, K. F., Jr., Fonarow, G. C., Emerman, C. L., LeJemtel, T. H., Costanzo, M. R., Abraham, W. T., et al. (2005). Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). American Heart Journal, 149(2), 209–216.

    PubMed  Google Scholar 

  5. Gheorghiade, M., Zannad, F., Sopko, G., Klein, L., Pina, I. L., Konstam, M. A., et al. (2005). Acute heart failure syndromes: current state and framework for future research. Circulation, 112(25), 3958–3968.

    PubMed  Google Scholar 

  6. Wang, L., Lv, Y., Li, G., & Xiao, J. (2018). MicroRNAs in heart and circulation during physical exercise. Journal of Sport and Health Science, 7(4), 433–441.

    PubMed  PubMed Central  Google Scholar 

  7. Rahimi, K., Bennett, D., Conrad, N., Williams, T. M., Basu, J., Dwight, J., et al. (2014). Risk prediction in patients with heart failure: a systematic review and analysis. JACC Heart Failure, 2(5), 440–446.

    PubMed  Google Scholar 

  8. Pocock, S. J., Ariti, C. A., McMurray, J. J., Maggioni, A., Kober, L., Squire, I. B., et al. (2013). Predicting survival in heart failure: a risk score based on 39 372 patients from 30 studies. European Heart Journal, 34(19), 1404–1413.

    PubMed  Google Scholar 

  9. Yancy, C. W., Jessup, M., Bozkurt, B., Butler, J., Casey, D. E., Jr., Colvin, M. M., et al. (2017). 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the Management of Heart Failure: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines and the Heart Failure Society of America. Journal of the American College of Cardiology, 70(6), 776–803.

    PubMed  Google Scholar 

  10. Chodick, G., Weitzman, D., Blaustein, R. O., Shalev, V., & Bash, L. D. (2017). Differences in short and long-term survival between males and females with new-onset heart failure: a retrospective cohort study. European Journal of Internal Medicine, 41, e21–e23.

    PubMed  Google Scholar 

  11. Bleumink, G. S., Knetsch, A. M., Sturkenboom, M. C., Straus, S. M., Hofman, A., Deckers, J. W., et al. (2004). Quantifying the heart failure epidemic: prevalence, incidence rate, lifetime risk and prognosis of heart failure the Rotterdam study. European Heart Journal, 25(18), 1614–1619.

    PubMed  Google Scholar 

  12. Stein, G. Y., Ben-Gal, T., Kremer, A., Bental, T., Alon, D., Korenfeld, R., et al. (2013). Gender-related differences in hospitalized heart failure patients. European Journal of Heart Failure, 15(7), 734–741.

    PubMed  Google Scholar 

  13. Nieminen, M. S., Harjola, V. P., Hochadel, M., Drexler, H., Komajda, M., Brutsaert, D., et al. (2008). Gender related differences in patients presenting with acute heart failure. Results from EuroHeart Failure Survey II. European Journal of Heart Failure, 10(2), 140–148.

    PubMed  Google Scholar 

  14. Gustafsson, F., Torp-Pedersen, C., Burchardt, H., Buch, P., Seibaek, M., Kjoller, E., et al. (2004). Female sex is associated with a better long-term survival in patients hospitalized with congestive heart failure. European Heart Journal, 25(2), 129–135.

    PubMed  Google Scholar 

  15. Vaartjes, I., Hoes, A. W., Reitsma, J. B., de Bruin, A., Grobbee, D. E., Mosterd, A., et al. (2010). Age- and gender-specific risk of death after first hospitalization for heart failure. BMC Public Health, 10, 637.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Conde-Martel, A., Arkuch, M. E., Formiga, F., Manzano-Espinosa, L., Aramburu-Bodas, O., Gonzalez-Franco, A., et al. (2015). Gender related differences in clinical profile and outcome of patients with heart failure. Results of the RICA Registry. Revista Clínica Española, 215(7), 363–370.

    CAS  PubMed  Google Scholar 

  17. Stramba-Badiale, M., Fox, K. M., Priori, S. G., Collins, P., Daly, C., Graham, I., et al. (2006). Cardiovascular diseases in women: a statement from the policy conference of the European Society of Cardiology. European Heart Journal, 27(8), 994–1005.

    PubMed  Google Scholar 

  18. Sherwood, A., Hill, L. K., Blumenthal, J. A., Adams, K. F., Jr., Paine, N. J., Koch, G. G., et al. (2017). Blood pressure reactivity to psychological stress is associated with clinical outcomes in patients with heart failure. American Heart Journal, 191, 82–90.

    PubMed  PubMed Central  Google Scholar 

  19. Meng, F. C., Li, Y. H., Lin, G. M., Lin, C. S., Yang, S. P., & Lin, W. H. (2018). Association of preexisting hypertension with the morality in patients with systolic heart failure in Taiwan: the TSOC-HFrEF registry. Indian Heart Journal, 70(5), 604–607.

    PubMed  PubMed Central  Google Scholar 

  20. Segal, O., Segal, G., Leibowitz, A., Goldenberg, I., Grossman, E., & Klempfner, R. (2017). Elevation in systolic blood pressure during heart failure hospitalization is associated with increased short and long-term mortality. Medicine (Baltimore), 96(5), e5890.

    Google Scholar 

  21. Schmid, F. A., Schlager, O., Keller, P., Seifert, B., Huang, R., Frohlich, G. M., et al. (2017). Prognostic value of long-term blood pressure changes in patients with chronic heart failure. European Journal of Heart Failure, 19(7), 837–842.

    PubMed  Google Scholar 

  22. Klein, L., O'Connor, C. M., Leimberger, J. D., Gattis-Stough, W., Pina, I. L., Felker, G. M., et al. (2005). Lower serum sodium is associated with increased short-term mortality in hospitalized patients with worsening heart failure: results from the outcomes of a prospective trial of intravenous Milrinone for exacerbations of chronic heart failure (OPTIME-CHF) study. Circulation, 111(19), 2454–2460.

    CAS  PubMed  Google Scholar 

  23. Rusinaru, D., Tribouilloy, C., Berry, C., Richards, A. M., Whalley, G. A., Earle, N., et al. (2012). Relationship of serum sodium concentration to mortality in a wide spectrum of heart failure patients with preserved and with reduced ejection fraction: an individual patient data meta-analysis(dagger): Meta-analysis Global Group in Chronic heart failure (MAGGIC). European Journal of Heart Failure, 14(10), 1139–1146.

    CAS  PubMed  Google Scholar 

  24. Gheorghiade, M., Abraham, W. T., Albert, N. M., Gattis Stough, W., Greenberg, B. H., O'Connor, C. M., et al. (2007). Relationship between admission serum sodium concentration and clinical outcomes in patients hospitalized for heart failure: an analysis from the OPTIMIZE-HF registry. European Heart Journal, 28(8), 980–988.

    CAS  PubMed  Google Scholar 

  25. Cappola, T. P., Felker, G. M., Kao, W. H., Hare, J. M., Baughman, K. L., & Kasper, E. K. (2002). Pulmonary hypertension and risk of death in cardiomyopathy: patients with myocarditis are at higher risk. Circulation, 105(14), 1663–1668.

    PubMed  Google Scholar 

  26. Szwejkowski, B. R., Elder, D. H., Shearer, F., Jack, D., Choy, A. M., Pringle, S. D., et al. (2012). Pulmonary hypertension predicts all-cause mortality in patients with heart failure: a retrospective cohort study. European Journal of Heart Failure, 14(2), 162–167.

    PubMed  Google Scholar 

  27. Bursi, F., McNallan, S. M., Redfield, M. M., Nkomo, V. T., Lam, C. S., Weston, S. A., et al. (2012). Pulmonary pressures and death in heart failure: a community study. Journal of the American College of Cardiology, 59(3), 222–231.

    PubMed  PubMed Central  Google Scholar 

  28. Shalaby, A., Voigt, A., El-Saed, A., & Saba, S. (2008). Usefulness of pulmonary artery pressure by echocardiography to predict outcome in patients receiving cardiac resynchronization therapy heart failure. The American Journal of Cardiology, 101(2), 238–241.

    PubMed  Google Scholar 

  29. Kalogeropoulos, A. P., Siwamogsatham, S., Hayek, S., Li, S., Deka, A., Marti, C. N., et al. (2014). Echocardiographic assessment of pulmonary artery systolic pressure and outcomes in ambulatory heart failure patients. Journal of the American Heart Association, 3(1), e000363.

    PubMed  PubMed Central  Google Scholar 

  30. Damy, T., Goode, K. M., Kallvikbacka-Bennett, A., Lewinter, C., Hobkirk, J., Nikitin, N. P., et al. (2010). Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure. European Heart Journal, 31(18), 2280–2290.

    CAS  PubMed  Google Scholar 

  31. Adamson, P. B., Abraham, W. T., Stevenson, L. W., Desai, A. S., Lindenfeld, J., Bourge, R. C., et al. (2016). Pulmonary artery pressure-guided heart failure management reduces 30-day readmissions. Circulation. Heart Failure, 9(6). https://doi.org/10.1161/CIRCHEARTFAILURE.115.002600.

  32. Bangalore, S., Messerli, F. H., Wun, C. C., Zuckerman, A. L., DeMicco, D., Kostis, J. B., et al. (2010). J-curve revisited: An analysis of blood pressure and cardiovascular events in the treating to new targets (TNT) trial. European Heart Journal, 31(23), 2897–2908.

    CAS  PubMed  Google Scholar 

  33. Group, S. P. S. S, Benavente, O. R., Coffey, C. S., Conwit, R., Hart, R. G., McClure, L. A., et al. (2013). Blood-pressure targets in patients with recent lacunar stroke: the SPS3 randomised trial. Lancet, 382(9891), 507–515.

    Google Scholar 

  34. Group, A. S, Cushman, W. C., Evans, G. W., Byington, R. P., Goff, D. C., Jr., Grimm, R. H., Jr., et al. (2010). Effects of intensive blood-pressure control in type 2 diabetes mellitus. The New England Journal of Medicine, 362(17), 1575–1585.

    Google Scholar 

  35. Ferreira, J. P., Duarte, K., Pfeffer, M. A., McMurray, J. J. V., Pitt, B., Dickstein, K., et al. (2018). Association between mean systolic and diastolic blood pressure throughout the follow-up and cardiovascular events in acute myocardial infarction patients with systolic dysfunction and/or heart failure: an analysis from the high-risk myocardial infarction database initiative. European Journal of Heart Failure, 20(2), 323–331.

    PubMed  Google Scholar 

  36. Voors, A. A., Ouwerkerk, W., Zannad, F., van Veldhuisen, D. J., Samani, N. J., Ponikowski, P., et al. (2017). Development and validation of multivariable models to predict mortality and hospitalization in patients with heart failure. European Journal of Heart Failure, 19(5), 627–634.

    CAS  PubMed  Google Scholar 

  37. Upadhya, B., Rocco, M., Lewis, C. E., Oparil, S., Lovato, L. C., Cushman, W. C., et al. (2017). Effect of intensive blood pressure treatment on heart failure events in the systolic blood pressure reduction intervention trial. Circulation. Heart Failure, 10(4). https://doi.org/10.1161/CIRCHEARTFAILURE.116.003613.

    Google Scholar 

  38. Farag, M., Borst, T., Sabashnikov, A., Zeriouh, M., Schmack, B., Arif, R., et al. (2017). Surgery for infective endocarditis: outcomes and predictors of mortality in 360 consecutive patients. Medical Science Monitor, 23, 3617–3626.

    PubMed  PubMed Central  Google Scholar 

  39. Yoshihisa, A., Sato, Y., Yokokawa, T., Sato, T., Suzuki, S., Oikawa, M., et al. (2018). Liver fibrosis score predicts mortality in heart failure patients with preserved ejection fraction. ESC Heart Failure, 5(2), 262–270.

    PubMed  Google Scholar 

  40. Samsky, M. D., Patel, C. B., DeWald, T. A., Smith, A. D., Felker, G. M., Rogers, J. G., et al. (2013). Cardiohepatic interactions in heart failure: an overview and clinical implications. Journal of the American College of Cardiology, 61(24), 2397–2405.

    PubMed  Google Scholar 

  41. Moller, S., & Bernardi, M. (2013). Interactions of the heart and the liver. European Heart Journal, 34(36), 2804–2811.

    PubMed  Google Scholar 

  42. Nikolaou, M., Parissis, J., Yilmaz, M. B., Seronde, M. F., Kivikko, M., Laribi, S., et al. (2013). Liver function abnormalities, clinical profile, and outcome in acute decompensated heart failure. European Heart Journal, 34(10), 742–749.

    PubMed  Google Scholar 

  43. Zymlinski, R., Sokolski, M., Biegus, J., Siwolowski, P., Nawrocka-Millward, S., Sokolska, J. M., et al. (2018). Multi-organ dysfunction/injury on admission identifies acute heart failure patients at high risk of poor outcome. European Journal of Heart Failure. https://doi.org/10.1002/ejhf.1378.

    PubMed  Google Scholar 

  44. Cannon, J. A., McMurray, J. J., & Quinn, T. J. (2015). ‘Hearts and minds’: association, causation and implication of cognitive impairment in heart failure. Alzheimer's Research & Therapy, 7(1), 22.

    Google Scholar 

  45. Satilmisoglu, M. H., Ozyilmaz, S. O., Gul, M., Ak Yildirim, H., Kayapinar, O., Gokturk, K., et al. (2017). Predictive values of D-dimer assay, GRACE scores and TIMI scores for adverse outcome in patients with non-ST-segment elevation myocardial infarction. Therapeutics and Clinical Risk Management, 13, 393–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zorlu, A., Yilmaz, M. B., Yucel, H., Bektasoglu, G., Refiker Ege, M., & Tandogan, I. (2012). Increased d-dimer levels predict cardiovascular mortality in patients with systolic heart failure. Journal of Thrombosis and Thrombolysis, 33(4), 322–328.

    CAS  PubMed  Google Scholar 

  47. Bell, J. R., Curl, C. L., Harding, T. W., Vila Petroff, M., Harrap, S. B., & Delbridge, L. M. D. (2016). Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and beta-adrenergic challenge are different. Biology of Sex Differences, 7, 32.

    PubMed  PubMed Central  Google Scholar 

  48. Hutcheon, J. A., Lisonkova, S., & Joseph, K. S. (2011). Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Practice & Research. Clinical Obstetrics & Gynaecology, 25(4), 391–403.

    Google Scholar 

  49. Hopper, I., Kotecha, D., Chin, K. L., Mentz, R. J., & von Lueder, T. G. (2016). Comorbidities in heart failure: are there gender differences? Current Heart Failure Reports, 13(1), 1–12.

    PubMed  Google Scholar 

  50. Bellamy, L., Casas, J. P., Hingorani, A. D., & Williams, D. (2009). Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet, 373(9677), 1773–1779.

    CAS  PubMed  Google Scholar 

  51. Chen, Y. J., Sung, S. H., Cheng, H. M., Huang, W. M., Wu, C. L., Huang, C. J., et al. (2017). Performance of AHEAD score in an Asian cohort of acute heart failure with either preserved or reduced left ventricular systolic function. Journal of the American Heart Association, 6(5). https://doi.org/10.1161/JAHA.116.004297.

Download references

Funding

This work was supported by the grants from National Natural Science Foundation of China (81730106 and 81670347 to XL Li) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD20102013 to XL Li).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinli Li.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This study was approved by the Ethic Committee of the First Affiliated Hospital of Nanjing Medical University and registered at http://www.chictr.org/cn (Registration Number: ChiCTR-ONC-12001944). From March 2012 to October 2016, a total of 493 patients were prospectively enrolled and hospitalized for diagnosis of AHF in Cardiology Department of the First Affiliated Hospital of Nanjing Medical University, according to Chinese guidelines for the diagnosis and treatment of heart failure. Data collection included demographic characteristics, medical history, etiology and comorbidity of AHF, oral medications at admission, laboratory examination, 12-lead ECG, and echocardiography. Patients with AHF hospitalization were followed up for 18 months using all-cause death as primary endpoint.

Informed Consent

All participants gave written informed consent in accordance with the Declaration of Helsinki.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Chen, M., Wang, K. et al. Gender Differences in Prognostic Markers of All-Cause Death in Patients with Acute Heart Failure: a Prospective 18-Month Follow-Up Study. J. of Cardiovasc. Trans. Res. 13, 97–109 (2020). https://doi.org/10.1007/s12265-019-09893-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09893-2

Keywords

Navigation