Skip to main content
Log in

Speckle-Tracking Echocardiographic Strain Analysis Reliably Estimates Degree of Acute LV Unloading During Mechanical LV Support by Impella

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Non-invasive means of evaluating appropriate cardiac unloading remain to be established. We hypothesized that myocardial deformation assessed by echocardiographic speckle-tracking strain analysis can reliably estimate the degree of left ventricular (LV) unloading under mechanical circulatory support. A total of 24 Yorkshire pigs underwent Impella-mediated acute LV unloading 1–2 weeks after myocardial infarction (MI). Echocardiographic and invasive pressure-volume measurements were used to evaluate the degree of LV unloading. Pressure-volume analysis before and after LV unloading exhibited a significant decrease in stroke work (3399 ± 1440 to 1244 ± 659 mmHg ml, p < 0.001), suggesting reduced external cardiac work. Both longitudinal strain (− 14.6 ± 4.1% to − 10.6 ± 2.3%, p < 0.001) and circumferential strain (− 18.7 ± 6.1% to − 9.3 ± 3.5%, p < 0.001) decreased after LV unloading, and there were linear relationships between stroke work and echocardiographic longitudinal (r = − 0.61, p < 0.001) as well as circumferential strains (r = − 0.75, p < 0.001). Echocardiographic LV strain analysis offers a non-invasive assessment of LV unloading in subacute MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

2DE:

Two-dimensional echocardiography

3DE:

Three-dimensional echocardiography

CS:

Circumferential strain

ICC:

Interclass correlation coefficient

LS:

Longitudinal strain

LV:

Left ventricular

MI:

Myocardial infarction

STE:

Speckle-tracking echocardiography

References

  1. Kuchibhotla, S., Esposito, M. L., Breton, C., Pedicini, R., Mullin, A., O'Kelly, R., et al. (2017). Acute biventricular mechanical circulatory support for cardiogenic shock. Journal of the American Heart Association, 6(10), doi:ARTN e006670. https://doi.org/10.1161/JAHA.117.006670.

  2. Burzotta, F., Trani, C., Doshi, S. N., Townend, J., van Geuns, R. J., Hunziker, P., et al. (2015). Impella ventricular support in clinical practice: collaborative viewpoint from a European expert user group. International Journal of Cardiology, 201, 684–691. https://doi.org/10.1016/j.ijcard.2015.07.065.

    Article  PubMed  Google Scholar 

  3. Burkhoff, D., & Naidu, S. S. (2012). The science behind percutaneous hemodynamic support: a review and comparison of support strategies. Catheterization and Cardiovascular Interventions, 80(5), 816–829. https://doi.org/10.1002/ccd.24421.

    Article  PubMed  Google Scholar 

  4. Meyns, B., Stolinski, J., Leunens, V., Verbeken, E., & Flameng, W. (2003). Left ventricular support by catheter-mounted axial flow pump reduces infarct size. Journal of the American College of Cardiology, 41(7), 1087–1095. https://doi.org/10.1016/S0735-1097(03)00084-6.

    Article  PubMed  Google Scholar 

  5. Kapur, N. K., Qiao, X. Y., Paruchuri, V., Morine, K. J., Syed, W., Dow, S., et al. (2015). Mechanical pre-conditioning with acute circulatory support before reperfusion limits infarct size in acute myocardial infarction. Jacc-Heart Failure, 3(11), 873–882. https://doi.org/10.1016/j.jchf.2015.06.010.

    Article  PubMed  Google Scholar 

  6. Soucy, K. G., Bartoli, C. R., Phillips, D., Giridharan, G. A., Sobieski, M. A., Wead, W. B., et al. (2017). Continuous-flow left ventricular assist device support improves myocardial supply: demand in chronic heart failure. Annals of Biomedical Engineering, 45(6), 1475–1486. https://doi.org/10.1007/s10439-017-1804-x.

    Article  PubMed  Google Scholar 

  7. Collier, P., Phelan, D., & Klein, A. (2017). A test in context: myocardial strain measured by speckle-tracking echocardiography. Journal of the American College of Cardiology, 69(8), 1043–1056. https://doi.org/10.1016/j.jacc.2016.12.012.

    Article  PubMed  Google Scholar 

  8. Prastaro, M., Pirozzi, E., Gaibazzi, N., Paolillo, S., Santoro, C., Savarese, G., et al. (2017). Expert Review on the Prognostic Role of Echocardiography after Acute Myocardial Infarction. Journal of the American Society of Echocardiography, 30(5), 431. https://doi.org/10.1016/j.echo.2017.01.020.

    Article  PubMed  Google Scholar 

  9. Ishikawa, K., Aguero, J., Tilemann, L., Ladage, D., Hammoudi, N., Kawase, Y., et al. (2014). Characterizing preclinical models of ischemic heart failure: differences between LAD and LCx infarctions. American Journal of Physiology. Heart and Circulatory Physiology, 307(10), H1478–H1486. https://doi.org/10.1152/ajpheart.00797.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Watanabe, S., Fish, K., Kovacic, J. C., Bikou, O., Leonardson, L., Nomoto, K., et al. (2018). Left ventricular unloading using an Impella CP improves coronary flow and infarct zone perfusion in ischemic heart failure. Journal of the American Heart Association, 7(6). https://doi.org/10.1161/JAHA.117.006462.

  11. Ishikawa, K., Aguero, J., Oh, J. G., Hammoudi, N., Fish, L. A., Leonardson, L., et al. (2015). Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. Journal of the American Heart Association, 4(5), doi:ARTN e001925. https://doi.org/10.1161/JAHA.115.001925.

  12. Addetia, K., Uriel, N., Maffessanti, F., Sayer, G., Adatya, S., Kim, G. H., et al. (2017). 3D morphological changes in LV and RV during LVAD ramp studies. JACC Cardiovasc Imaging, doi:10.1016/j.jcmg.2016.12.019.

  13. Sun, X. T., Li, J., Zhao, W. P., Lu, S. Y., Guo, C. F., Lai, H., et al. (2016). Early assistance with left ventricular assist device limits left ventricular remodeling after acute myocardial infarction in a swine model. Artificial Organs, 40(3), 243–251. https://doi.org/10.1111/aor.12541.

    Article  PubMed  Google Scholar 

  14. Perry, P., David, E., Atkins, B., & Raff, G. (2017). Novel application of a percutaneous left ventricular assist device as a bridge to transplant in a paediatric patient with severe heart failure due to viral myocarditis. Interactive Cardiovascular and Thoracic Surgery, 24(3), 474–476. https://doi.org/10.1093/icvts/ivw387.

    Article  PubMed  Google Scholar 

  15. Potter, E., & Marwick, T. H. (2018). Assessment of left ventricular function by echocardiography: the case for routinely adding global longitudinal strain to ejection fraction. JACC. Cardiovascular Imaging, 11(2 Pt 1), 260–274. https://doi.org/10.1016/j.jcmg.2017.11.017.

    Article  PubMed  Google Scholar 

  16. Smiseth, O. A., Torp, H., Opdahl, A., Haugaa, K. H., & Urheim, S. (2016). Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal, 37(15), 1196–1207. https://doi.org/10.1093/eurheartj/ehv529.

    Article  PubMed  Google Scholar 

  17. Burkhoff, D., & Naidu, S. S. (2012). The science behind percutaneous hemodynamic support: a review and comparison of support strategies. Catheterization and Cardiovascular Interventions, 80(5), 816–829. https://doi.org/10.1002/ccd.24421.

    Article  PubMed  Google Scholar 

  18. Burns, A. T., La Gerche, A., D'Hooge, J., MacIsaac, A. I., & Prior, D. L. (2010). Left ventricular strain and strain rate: characterization of the effect of load in human subjects. European Journal of Echocardiography, 11(3), 283–289. https://doi.org/10.1093/ejechocard/jep214.

    Article  PubMed  Google Scholar 

  19. Burkhoff, D., Sayer, G., Doshi, D., & Uriel, N. (2015). Hemodynamics of mechanical circulatory support. Journal of the American College of Cardiology, 66(23), 2664–2674.

    Article  Google Scholar 

  20. Suga, H. (1990). Cardiac mechanics and energetics—from Emax to PVA. Frontiers of Medical and Biological Engineering, 2(1), 3–22.

    CAS  PubMed  Google Scholar 

  21. Ishikawa, K., Aguero, J., Oh, J. G., Hammoudi, N., Fish, L. A., Leonardson, L., et al. (2015). Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. Journal of the American Heart Association, 4(5). https://doi.org/10.1161/JAHA.115.001925.

  22. Ishikawa, K., Watanabe, S., Hammoudi, N., Aguero, J., Bikou, O., Fish, K., et al. (2018). Reduced longitudinal contraction is associated with ischemic mitral regurgitation after posterior MI. American Journal of Physiology. Heart and Circulatory Physiology, 314(2), H322–H329. https://doi.org/10.1152/ajpheart.00546.2017.

    Article  CAS  PubMed  Google Scholar 

  23. Ishikawa, K., Kawase, Y., Ladage, D., Chemaly, E. R., Tilemann, L., Fish, K., et al. (2012). Temporal changes of strain parameters in the progress of chronic ischemia: with comparison to transmural infarction. The International Journal of Cardiovascular Imaging, 28(7), 1671–1681. https://doi.org/10.1007/s10554-012-0010-z.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Lauren Leonardson, LVT, for her excellent technical support.

Funding

This study was supported by National Institute of Health (NIH) R01 HL139963 (K.I.), HL117505, HL 119046, HL129814, HL128072, HL131404, HL135093, a P50 HL112324 (R.J.H.), American Heart Association - Scientist Development Grant 17SDG33410873 (K.I.), and two Transatlantic Fondation Leducq grants. O.B. was supported by the Deutsche Herzstiftung. We would like to acknowledge the Gene Therapy Resource Program (GTRP) of the National Heart, Lung, and Blood Institute, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiyotake Ishikawa.

Ethics declarations

Human Subjects/Informed Consent Statement

No human studies were carried out by the authors for this article.

Animal Experiments

All institutional and national guidelines for the care and use of laboratory animals were followed and approved by the appropriate institutional committees.

Conflict of Interest

K.I. received a research grant from Abiomed Inc. (Danvers, MA) and the Impella device was provided from the company. N.H. reports consulting/advisory activities for Philips. G.L. received a research grant from Abiomed Inc. not related to current study.

Additional information

Associate Editor Navin Kumar Kapur oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hammoudi, N., Watanabe, S., Bikou, O. et al. Speckle-Tracking Echocardiographic Strain Analysis Reliably Estimates Degree of Acute LV Unloading During Mechanical LV Support by Impella. J. of Cardiovasc. Trans. Res. 12, 135–141 (2019). https://doi.org/10.1007/s12265-018-9812-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9812-2

Keywords

Navigation