Fontan Surgical Planning: Previous Accomplishments, Current Challenges, and Future Directions

  • Phillip M. Trusty
  • Timothy C. Slesnick
  • Zhenglun Alan Wei
  • Jarek Rossignac
  • Kirk R. Kanter
  • Mark A. Fogel
  • Ajit P. Yoganathan


The ultimate goal of Fontan surgical planning is to provide additional insights into the clinical decision-making process. In its current state, surgical planning offers an accurate hemodynamic assessment of the pre-operative condition, provides anatomical constraints for potential surgical options, and produces decent post-operative predictions if boundary conditions are similar enough between the pre-operative and post-operative states. Moving forward, validation with post-operative data is a necessary step in order to assess the accuracy of surgical planning and determine which methodological improvements are needed. Future efforts to automate the surgical planning process will reduce the individual expertise needed and encourage use in the clinic by clinicians. As post-operative physiologic predictions improve, Fontan surgical planning will become an more effective tool to accurately model patient-specific hemodynamics.


Fontan Patient specific Surgical planning Pre-operative planning Hepatic flow distribution 





Computational fluid dynamics


Congenital heart defect


Cardiac magnetic resonance


Extracardiac conduit


Hepatic flow distribution


Inferior vena cava


Left pulmonary artery


Lumped parameter network


Left superior vena cava


Pulmonary arteriovenous malformation


Phase-contrast magnetic resonance imaging


Right pulmonary artery


Steady-state free precession


Superior vena cava


Total cavopulmonary connections


Velocity encoding



This work was funded by the NHLBI Grants HL67622 and HL098252 as well as an American Heart Association Predoctoral fellowship 17PRE33630117.

Compliance with Ethical Standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study. No animal studies were carried out by any of the authors for this article.

Conflict of Interest

Phillip Trusty, Timothy Slesnick, Alan Wei, Jarek Rossignac, Kirk Kanter, and Ajit Yoganathan declare that they have no conflict of interest. Mark Fogel received a research grant.


  1. 1.
    Fontan, F., & Baudet, E. (1971). Surgical repair of tricuspid atresia. Thorax, 26(3), 240–248.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gewillig, M., & Brown, S. C. (2016). The Fontan circulation after 45 years: update in physiology. Heart, 102(14), 1081–1086.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rychik, J., Goldberg, D., Rand, E., Semeao, E., Russo, P., Dori, Y., et al. (2013). End-organ consequences of the Fontan operation: liver fibrosis, protein-losing enteropathy and plastic bronchitis. Cardiology in the Young, 23, 831–840.CrossRefPubMedGoogle Scholar
  4. 4.
    Shah, M. J., Rychik, J., Fogel, M. A., Murphy, J. D., & Jacobs, M. L. (1997). Pulmonary AV malformations after superior cavopulmonary connection: resolution after inclusion of hepatic veins in the pulmonary circulation. Annals of Thoracic Surgery, 4975(96), 0–3.Google Scholar
  5. 5.
    Rychik, J. (2016). The relentless effects of the Fontan paradox. Seminars in Thoracic and Cardiovascular Surgery. Pediatric Cardiac Surgery Annual, 19(1), 37–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Rychik, J., Veldtman, G., Rand, E., Russo, P., Rome, J., Krok, K., et al. (2012). The precarious state of the liver after a Fontan operation: summary of a multidisciplinary symposium. Pediatric Cardiology, 33(7), 1001–1012.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Shinohara, T., & Yokoyama, T. (2001). Pulmonary arteriovenous malformation in patients with total cavopulmonary shunt: what role does lack of hepatic venous blood flow to the lungs play? Pediatric Cardiology, 22(4), 343–346.CrossRefPubMedGoogle Scholar
  8. 8.
    De Leval, M. R., Kilner, P., Gewillig, M., & Bull, C. (1988). Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. The Journal of Thoracic and Cardiovascular Surgery, 96(5), 682.PubMedGoogle Scholar
  9. 9.
    De Leval, M. R., Dubini, G., Migliavacca, F., Jalali, H., Camporini, G., Redington, A., et al. (1996). Use of computational fluid dynamics in the design of surgical procedures: application to the study of competitive flows in cavopulmonary connections. The Journal of Thoracic and Cardiovascular Surgery, 111(3), 502–513.CrossRefPubMedGoogle Scholar
  10. 10.
    Khunatorn, Y., Mahalingam, S., DeGroff, C. G., & Shandas, R. (2002). Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. Journal of Biomechanical Engineering, 124(4), 364.CrossRefPubMedGoogle Scholar
  11. 11.
    Pekkan, K., Whited, B., Kanter, K., Sharma, S., de Zelicourt, D., Sundareswaran, K., et al. (2008). Patient-specific surgical planning and hemodynamic computational fluid dynamics optimization through free-form haptic anatomy editing tool (SURGEM). Medical & Biological Engineering & Computing, 46(11), 1139–1152.CrossRefGoogle Scholar
  12. 12.
    Tang, E., Restrepo, M., Haggerty, C. M., Mirabella, L., Bethel, J., Whitehead, K., et al. (2014). Geometric characterization of patient-specific total cavopulmonary connections and its relationship to hemodynamics. JACC. Cardiovascular Imaging, 7(3), 215–224.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Soerensen, D. D., Pekkan, K., Sundareswaran, K. S., & Yoganathan, A. P. (2004). New power loss optimized Fontan connection evaluated by calculation of power loss using high resolution PC-MRI and CFD. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2, 1144–1147.Google Scholar
  14. 14.
    Marsden, A. L., Bernstein, A. J., Reddy, V. M., Shadden, S., Spilker, R., Chan, F., et al. (2009). Evaluation of a novel Y-shaped extracardiac Fontan baffle using computational fluid dynamics. The Journal of Thoracic and Cardiovascular Surgery, 137(2), 394–403.CrossRefPubMedGoogle Scholar
  15. 15.
    Tree, M., Trusty, P., Munz, B., Slesnick, T., Yoganathan, A., Deshpande, S., et al. (2016). In vitro examination of the HeartWare Circulite VAD in the Fontan circulation. ASAIO, 35(4), S46.Google Scholar
  16. 16.
    Weinstein, S., Bello, R., Pizarro, C., Fynn-Thompson, F., Kirklin, J., Guleserian, K., et al. (2014). The use of the Berlin heart EXCOR in patients with functional single ventricle. The Journal of Thoracic and Cardiovascular Surgery, 147(2), 697–705.CrossRefPubMedGoogle Scholar
  17. 17.
    Deshpande, S. R., Maher, K. O., & Morales, D. L. (2016). Mechanical circulatory support in children: challenges and opportunities. Progress in Pediatric Cardiology, 43, 31–41.CrossRefGoogle Scholar
  18. 18.
    Pundi, K. N., Johnson, J. N., Dearani, J., Pundi, K., Li, Z., Hinck, C., et al. (2015). 40-year follow-up after the Fontan operation long-term outcomes of 1,052 patients. Journal of the American College of Cardiology, 66(15), 1700–1710.CrossRefPubMedGoogle Scholar
  19. 19.
    Trusty, P. M., Restrepo, M., Kanter, K. R., Yoganathan, A. P., Fogel, M., & Slesnick, T. C. (2016). A pulsatile hemodynamic evaluation of the commercially available bifurcated Y-graft Fontan modification and comparison with the lateral tunnel and extracardiac conduits. The Journal of Thoracic and Cardiovascular Surgery, 151(6), 1529–1536.CrossRefPubMedGoogle Scholar
  20. 20.
    Sundareswaran, K. S., de Zélicourt, D., Sharma, S., Kanter, K., Spray, T., Rossignac, J., et al. (2009). Correction of pulmonary arteriovenous malformation using image-based surgical planning. JACC. Cardiovascular Imaging, 2(8), 1024–1030.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    De Zelicourt, D., Marsden, A., Fogel, M., & Yoganathan, A. P. (2010). Imaging and patient-specific simulations for the Fontan surgery: current methodologies and clinical applications. Progress in Pediatric Cardiology, 30(1–2), 31–44.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fogel, M. A., Khiabani, R. H., & Yoganathan, A. (2013). Imaging for preintervention planning pre- and post-Fontan procedures. Circulation. Cardiovascular Imaging, 6(6), 1092–1101.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Slesnick, T. C., & Yoganathan, A. P. (2014). Computational modeling of Fontan physiology: at the crossroads of pediatric cardiology and biomedical engineering. The International Journal of Cardiovascular Imaging, 30(6), 1073–1084.CrossRefPubMedGoogle Scholar
  24. 24.
    Wei, Z., Trusty, P. M., Tree, M., Haggerty, C., Tang, E., Fogel, M., et al. (2016). Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning? Journal of Biomechanics, 50, 172–179.CrossRefPubMedGoogle Scholar
  25. 25.
    Marino, B. S., Fogel, M., Mercer-Rosa, L., Wei, A., Trusty, P. M., Tree, M., et al. (2017). Poor Fontan geometry, hemodynamics, and computational fluid dynamics are associated with worse quality of life. Circulation, 136(Supp1), A18082.Google Scholar
  26. 26.
    Fogel, M. A., Trusty, P. M., Wei, A., Harris, M., Whitehead, K., & Yoganathan, A. (2017). Cardiac magnetic resonance and computational fluid dynamic parameters are important predictors of adverse events in the Fontan almost 10 years after imaging. Circulation, 136(Supp1), A18160.Google Scholar
  27. 27.
    Khiabani, R. H., Whitehead, K. K., Han, D., Restrepo, M., Tang, E., Bethel, J., et al. (2015). Exercise capacity in single-ventricle patients after Fontan correlates with haemodynamic energy loss in TCPC. Heart, 101(2), 139–143.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang, W., Chan, F. P., Reddy, V. M., Marsden, A. L., & Feinstein, J. (2015). Flow simulations and validation for the first cohort of patients undergoing the Y-graft Fontan procedure. The Journal of Thoracic and Cardiovascular Surgery, 149(1), 247–255.CrossRefPubMedGoogle Scholar
  29. 29.
    De Moraes, T.F., Amorim, P.H. (2011). InVesalius—an open-source imaging application. Computational Vision and Medical Image Processing, 405.Google Scholar
  30. 30.
    Fedorov, A., Beichel, R., Kalphaty-Cramer, J., Finet, J., Fillion-Robin, J., Pujol, S., et al. (2012). 3D slicers as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9), 1323–1341.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R., & Ho, S. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage, 31(3), 1116–1128.CrossRefPubMedGoogle Scholar
  32. 32.
    Heiberg, E., Sjögren, J., Ugander, M., Carlsson, M., Engblom, H., & Arheden, H. (2010). Design and validation of segment—freely available software for cardiovascular image analysis. BMC Medical Imaging, 10(1), 1. CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bidhult, S. L., Carlsson, M., Steding-Ehrenborg, K., Arheden, H., & Heiberg, E. (2014). A new method for vessel segmentation based on a priori input from medical expertise in cine phase-contrast magnetic resonance imaging. Journal of Cardiovascular Magnetic Resonance, 16(Suppl 1), P355. CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Luffel, M., Sati, M., Rossignac, J., Yoganathan, A., Haggety, C., Restrepo, M., et al. (2015). SURGEM: a solid modeling tool for planning and optimizing pediatric heart surgeries. Computer-Aided Design, 70, 3–12. CrossRefGoogle Scholar
  35. 35.
    Restrepo, M., Luffel, M., Sebring, J., Kanter, K., del Nido, P., Veneziana, A., et al. (2014). Surgical planning of the total cavopulmonary connection: robustness analysis. Annals of Biomedical Engineering, 43(6), 1321–1334.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Zélicourt, D., Ge, L., Wang, C., Sotiropoulos, F., Gilmanov, A., & Yoganathan, A. (2009). Flow simulations in arbitrarily complex cardiovascular anatomies—an unstructured Cartesian grid approach. Computers and Fluids, 38(9), 1749–1762.CrossRefGoogle Scholar
  37. 37.
    Haggerty, C. M., Restrepo, M., Tang, E., Zelicourt, D., Sundareswaran, K., Mirabella, L., et al. (2013). Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis. The Journal of Thoracic and Cardiovascular Surgery, 148(4), 1–10.Google Scholar
  38. 38.
    Kung, E., Baretta, A., Baker, C., Arbia, G., Biglino, G., Corsini, C., et al. (2013). Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: two patient-specific cases. Journal of Biomechanics, 46(2), 423–429.CrossRefPubMedGoogle Scholar
  39. 39.
    Yang, W., Vignon-Clementel, I. E., Troianowski, G., Reddy, V. M., Feinstein, J., & Marsden, A. L. (2012). Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. The Journal of Thoracic and Cardiovascular Surgery, 143(5), 1086–1097.CrossRefPubMedGoogle Scholar
  40. 40.
    Corsini, C., Baker, C., Kung, E., Schievano, S., Arbia, G., Baretta, A., et al. (2014). An integrated approach to patient-specific predictive modeling for single ventricle heart palliation. Computer Methods in Biomechanics and Biomedical Engineering, 17(14), 1572–1589.CrossRefPubMedGoogle Scholar
  41. 41.
    Corsini, C., Baker, C., Baretta, A., Biglino, G., Hlavacek, A., Hsia, T. Y., et al. (2015). Integration of clinical data collected at different times for virtual surgery in single ventricle patients: a case study. Annals of Biomedical Engineering, 43(6), 1310–1320.CrossRefPubMedGoogle Scholar
  42. 42.
    Kung, E., Pennati, G., Migliavacca, F., Hsia, T., Figliola, R., Marsen, A., et al. (2014). A simulation protocol for exercise physiology in fontan patients using a closed loop lumped-parameter model. Journal of Biomechanical Engineering, 136(8), 1–13.CrossRefGoogle Scholar
  43. 43.
    Schiavazzi, D. E., Baretta, A., Pennati, G., Hsia, T. Y., & Marsden, A. L. (2017). Patient-specific parameter estimation in single-ventricle lumped circulation models under uncertainty. International Journal of Numerical Methods in Biomedical Engineering, 33(3), 1–34.CrossRefGoogle Scholar
  44. 44.
    Esmaily-Moghadam, M., Hsia, T. Y., & Marsden, A. L. (2015). The assisted bidirectional Glenn: a novel surgical approach for first-stage single-ventricle heart palliation. The Journal of Thoracic and Cardiovascular Surgery, 149(3), 699–705.CrossRefPubMedGoogle Scholar
  45. 45.
    Gewillig, M. (2005). The Fontan circulation. Heart, 91(6), 839–846.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Marsden, A. L., Vignon-Clementel, I. E., Chan, F. P., Feinstein, J., & Taylor, C. (2007). Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Annals of Biomedical Engineering, 35(2), 250–263.CrossRefPubMedGoogle Scholar
  47. 47.
    Orlando, W., Shandas, R., & DeGroff, C. (2006). Efficiency differences in computational simulations of the total cavo-pulmonary circulation with and without compliant vessel walls. Computer Methods and Programs in Biomedicine, 81(3), 220–227.CrossRefPubMedGoogle Scholar
  48. 48.
    Haggerty, C. M., de Zélicourt, D. A., Restrepo, M., Rossignac, J., Spray, T., Kanter, K., et al. (2012). Comparing pre- and post-operative Fontan hemodynamic simulations: implications for the reliability of surgical planning. Annals of Biomedical Engineering, 40(12), 2639–2651.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Yang, W., Feinstein, J., Shadden, S. C., Vignon-Clementel, I. E., & Marsden, A. L. (2013). Optimization of a Y-graft design for improved hepatic flow distribution in the Fontan circulation. Journal of Biomechanical Engineering, 135(1), 011002.CrossRefPubMedGoogle Scholar
  50. 50.
    Schiavazzi, D. E., Arbia, G., Baker, C., Hlavacek, A. M., Hsia, T. Y., Marsden, A. L., & Vignon-Clementel, I. E. (2016). Uncertainty quantification in virtual surgery hemodynamics predictions for single ventricle palliation. International Journal of Numerical Methods in Biomedical Engineering, 32(3), e02737.CrossRefGoogle Scholar
  51. 51.
    Schiavazzi, D. E., Kung, E. O., Marsden, A. L., Baker, C., Pennati, G., Hsia, T. Y., et al. (2015). Hemodynamic effects of left pulmonary artery stenosis after superior cavopulmonary connection: a patient-specific multiscale modeling study. The Journal of Thoracic and Cardiovascular Surgery, 149(3), 689–696.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Phillip M. Trusty
    • 1
  • Timothy C. Slesnick
    • 2
  • Zhenglun Alan Wei
    • 1
    • 3
  • Jarek Rossignac
    • 4
  • Kirk R. Kanter
    • 5
  • Mark A. Fogel
    • 6
  • Ajit P. Yoganathan
    • 1
  1. 1.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Department of Pediatrics, Division of Cardiology, Children’s Healthcare of AtlantaEmory University School of MedicineAtlantaUSA
  3. 3.School of Life ScienceFudan UniversityShanghaiChina
  4. 4.School of Interactive ComputingGeorgia Institute of TechnologyAtlantaUSA
  5. 5.Division of Cardiothoracic Surgery, Children’s Healthcare of AtlantaEmory University School of MedicineAtlantaUSA
  6. 6.Division of CardiologyChildren’s Hospital of PhiladelphiaPhiladelphiaUSA

Personalised recommendations