Skip to main content
Log in

Axonemal Dynein DNAH5 is Required for Sound Sensation in Drosophila Larvae

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Chordotonal neurons are responsible for sound sensation in Drosophila. However, little is known about how they respond to sound with high sensitivity. Using genetic labeling, we found one of the Drosophila axonemal dynein heavy chains, CG9492 (DNAH5), was specifically expressed in larval chordotonal neurons and showed a distribution restricted to proximal cilia. While DNAH5 mutation did not affect the cilium morphology or the trafficking of Inactive, a candidate auditory transduction channel, larvae with DNAH5 mutation had reduced startle responses to sound at low and medium intensities. Calcium imaging confirmed that DNAH5 functioned autonomously in chordotonal neurons for larval sound sensation. Furthermore, disrupting DNAH5 resulted in a decrease of spike firing responses to low-level sound in chordotonal neurons. Intriguingly, DNAH5 mutant larvae displayed an altered frequency tuning curve of the auditory organs. All together, our findings support a critical role of DNAH5 in tuning the frequency selectivity and the sound sensitivity of larval auditory neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fettiplace R, Hackney CM. The sensory and motor roles of auditory hair cells. Nat Rev Neurosci 2006, 7: 19–29.

    Article  CAS  PubMed  Google Scholar 

  2. Hudspeth AJ, Choe Y, Mehta AD, Martin P. Putting ion channels to work: mechanoelectrical transduction, adaptation, and amplification by hair cells. Proc Natl Acad Sci U S A 2000, 97: 11765–11772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lukashkin AN, Walling MN, Russell IJ. Power amplification in the mammalian cochlea. Curr Biol 2007, 17: 1340–1344.

    Article  CAS  PubMed  Google Scholar 

  4. Nobili R, Mammano F, Ashmore J. How well do we understand the cochlea? Trends Neurosci 1998, 21: 159–167.

    Article  CAS  PubMed  Google Scholar 

  5. Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiol Rev 2001, 81: 1305–1352.

    Article  CAS  PubMed  Google Scholar 

  6. Probst R. Otoacoustic emissions: an overview. Adv Otorhinolaryngol 1990, 44: 1–91.

    CAS  PubMed  Google Scholar 

  7. Gopfert MC, Humphris AD, Albert JT, Robert D, Hendrich O. Power gain exhibited by motile mechanosensory neurons in Drosophila ears. Proc Natl Acad Sci U S A 2005, 102: 325–330.

    Article  CAS  PubMed  Google Scholar 

  8. Gopfert MC, Robert D. Motion generation by Drosophila mechanosensory neurons. Proc Natl Acad Sci U S A 2003, 100: 5514–5519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nadrowski B, Albert JT, Gopfert MC. Transducer-based force generation explains active process in Drosophila hearing. Curr Biol 2008, 18: 1365–1372.

    Article  CAS  PubMed  Google Scholar 

  10. Hudspeth AJ. Making an effort to listen: mechanical amplification in the ear. Neuron 2008, 59: 530–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kazmierczak P, Muller U. Sensing sound: molecules that orchestrate mechanotransduction by hair cells. Trends Neurosci 2012, 35: 220–229.

    Article  CAS  PubMed  Google Scholar 

  12. Mhatre N. Active amplification in insect ears: mechanics, models and molecules. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015, 201: 19–37.

    Article  PubMed  Google Scholar 

  13. Warren B, Lukashkin AN, Russell IJ. The dynein-tubulin motor powers active oscillations and amplification in the hearing organ of the mosquito. Proc Biol Sci 2010, 277: 1761–1769.

    PubMed  PubMed Central  Google Scholar 

  14. Hu Y, Wang Z, Liu T, Zhang W. Piezo-like gene regulates locomotion in Drosophila larvae. Cell Rep 2019, 26: 1369–1377.

    Article  CAS  PubMed  Google Scholar 

  15. Scholz N, Gehring J, Guan C, Ljaschenko D, Fischer R, Lakshmanan V. The adhesion GPCR latrophilin/CIRL shapes mechanosensation. Cell Rep 2015, 11: 866–874.

    Article  CAS  PubMed  Google Scholar 

  16. Wu Z, Sweeney LB, Ayoob JC, Chak K, Andreone BJ, Ohyama T, et al. A combinatorial semaphorin code instructs the initial steps of sensory circuit assembly in the Drosophila CNS. Neuron 2011, 70: 281–298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zanini D, Giraldo D, Warren B, Katana R, Andres M, Reddy S, et al. Proprioceptive opsin functions in Drosophila larval locomotion. Neuron 2018, 98: 67–74.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang W, Yan Z, Jan LY, Jan YN. Sound response mediated by the TRP channels NOMPC, NANCHUNG, and INACTIVE in chordotonal organs of Drosophila larvae. Proc Natl Acad Sci U S A 2013, 110: 13612–13617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Albert JT, Gopfert MC. Hearing in Drosophila. Curr Opin Neurobiol 2015, 34: 79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Field LH, Matheson T. Chordotonal organs of insects. Adv Insect Physiol 1998, 27: 1–228.

    Article  Google Scholar 

  21. Lee E, Sivan-Loukianova E, Eberl DF, Kernan MJ. An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol 2008, 18: 1899–1906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Diggle CP, Moore DJ, Mali G, zur Lage P, Ait-Lounis A, Schmidts M, et al. HEATR2 plays a conserved role in assembly of the ciliary motile apparatus. PLoS Genet 2014, 10: e1004577.

  23. Kavlie RG, Kernan MJ, Eberl DF. Hearing in Drosophila requires TilB, a conserved protein associated with ciliary motility. Genetics 2010, 185: 177–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Newton FG, zur Lage PI, Karak S, Moore DJ, Gopfert MC, Jarman AP. Forkhead transcription factor Fd3F cooperates with Rfx to regulate a gene expression program for mechanosensory cilia specialization. Dev Cell 2012, 22: 1221–1233.

  25. zur Lage P, Stefanopoulou P, Styczynska-Soczka K, Quinn N, Mali G, von Kriegsheim A, et al. Ciliary dynein motor preassembly is regulated by Wdr92 in association with HSP90 co-chaperone, R2TP. J Cell Biol 2018, 217: 2583–2598.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hook P, Vallee RB. The dynein family at a glance. J Cell Sci 2006, 119: 4369–4371.

    Article  CAS  PubMed  Google Scholar 

  27. King SM. Axonemal dynein arms. Cold Spring Harb Perspect Biol 2016, 8: a028100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Roberts AJ, Malkova B, Walker ML, Sakakibara H, Numata N, Kon T, et al. ATP-driven remodeling of the linker domain in the dynein motor. Structure 2012, 20: 1670–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, et al. Drosophila auditory organ genes and genetic hearing defects. Cell 2012, 150: 1042–1054.

    Article  CAS  PubMed  Google Scholar 

  30. zur Lage P, Newton FG, Jarman AP. Survey of the ciliary motility machinery of Drosophila sperm and ciliated mechanosensory neurons reveals unexpected cell-type specific variations: a model for motile ciliopathies. Front Genet 2019, 10: 24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Karak S, Jacobs JS, Kittelmann M, Spalthoff C, Katana R, Sivan-Loukianova E, et al. Diverse roles of axonemal dyneins in Drosophila auditory neuron function and mechanical amplification in hearing. Sci Rep 2015, 5: 17085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ren X, Sun J, Housden BE, Hu Y, Roesel C, Lin S, et al. Optimized gene editing technology for Drosophila melanogaster using germ line-specific Cas9. Proc Natl Acad Sci U S A 2013, 110: 19012–19017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Deng B, Li Q, Liu X, Cao Y, Li B, Qian Y, et al. Chemoconnectomics: mapping chemical transmission in Drosophila. Neuron 2019, 101: 876–893.

    Article  CAS  PubMed  Google Scholar 

  34. Han C, Jan LY, Jan YN. Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci U S A 2011, 108: 9673–9678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xia Y, Xu W, Meng S, Lim NKH, Wang W, Huang FD. An efficient and reliable assay for investigating the effects of hypoxia/anoxia on Drosophila. Neurosci Bull 2018, 34: 397–402.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang W, Guo C, Chen D, Peng Q, Pan Y. Hierarchical control of Drosophila sleep, courtship, and feeding behaviors by male-specific P1 neurons. Neurosci Bull 2018, 34: 1105–1110.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Caldwell JC, Miller MM, Wing S, Soll DR, Eberl DF. Dynamic analysis of larval locomotion in Drosophila chordotonal organ mutants. Proc Natl Acad Sci U S A 2003, 100: 16053–16058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun Y, Jia Y, Guo Y, Chen F, Yan Z. Taurine Transporter dEAAT2 is Required for Auditory Transduction in Drosophila. Neurosci Bull 2018, 34: 939–950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y, Cheng LE, et al. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 2013, 493: 221–225.

    Article  CAS  PubMed  Google Scholar 

  40. Anderson M, Zheng Q, Dong X. Investigation of pain mechanisms by calcium imaging approaches. Neurosci Bull 2018, 34: 194–199.

    Article  CAS  PubMed  Google Scholar 

  41. Hirokawa N, Tanaka Y, Okada Y, Takeda S. Nodal flow and the generation of left-right asymmetry. Cell 2006, 125: 33–45.

    Article  CAS  PubMed  Google Scholar 

  42. Ibanez-Tallon I, Gorokhova S, Heintz N. Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 2002, 11: 715–721.

    Article  CAS  PubMed  Google Scholar 

  43. Ibanez-Tallon I, Pagenstecher A, Fliegauf M, Olbrich H, Kispert A, Ketelsen UP, et al. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 2004, 13: 2133–2141.

    Article  CAS  PubMed  Google Scholar 

  44. Loges NT, Olbrich H, Fenske L, Mussaffi H, Horvath J, Fliegauf M, et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am J Hum Genet 2008, 83: 547–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Moore DJ, Onoufriadis A, Shoemark A, Simpson MA, zur Lage PI, de Castro SC, et al. Mutations in ZMYND10, a gene essential for proper axonemal assembly of inner and outer dynein arms in humans and flies, cause primary ciliary dyskinesia. Am J Hum Genet 2013, 93: 346-356..

  46. Olbrich H, Haffner K, Kispert A, Volkel A, Volz A, Sasmaz G, et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat Genet 2002, 30: 143–144.

    Article  CAS  PubMed  Google Scholar 

  47. Wickstead B, Gull K. Dyneins across eukaryotes: a comparative genomic analysis. Traffic 2007, 8: 1708–1721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin G, et al. Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet 2019, 105: 198–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gong Z, Son W, Chung YD, Kim J, Shin DW, McClung CA, et al. Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. J Neurosci 2004, 24: 9059–9066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nesterov A, Spalthoff C, Kandasamy R, Katana R, Rankl NB, Andres M, et al. TRP Channels in Insect Stretch Receptors as Insecticide Targets. Neuron 2015, 86: 665–671.

    Article  CAS  PubMed  Google Scholar 

  51. Eberl DF, Hardy RW, Kernan MJ. Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci 2000, 20: 5981–5988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gong C, Ouyang Z, Zhao W, Wang J, Li K, Zhou P, et al. A neuronal pathway that commands deceleration in Drosophila larval light-avoidance. Neurosci Bull 2019, 35: 959–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Viswanadha R, Sale WS, Porter ME. Ciliary Motility: Regulation of Axonemal Dynein Motors. Cold Spring Harb Perspect Biol 2017, 9: a018325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Kamiya R, Kurimoto E, Muto E. Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein. J Cell Biol 1991, 112: 441–447.

    Article  CAS  PubMed  Google Scholar 

  55. Kamiya R, Okamoto M. A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. J Cell Sci 1985, 74: 181–191.

    Article  CAS  PubMed  Google Scholar 

  56. Mitchell DR, Rosenbaum JL. A motile Chlamydomonas flagellar mutant that lacks outer dynein arms. J Cell Biol 1985, 100: 1228–1234.

    Article  CAS  PubMed  Google Scholar 

  57. Kim J, Chung YD, Park DY, Choi S, Shin DW, Soh H, et al. A TRPV family ion channel required for hearing in Drosophila. Nature 2003, 424: 81–84.

    Article  CAS  PubMed  Google Scholar 

  58. Lehnert BP, Baker AE, Gaudry Q, Chiang AS, Wilson RI. Distinct roles of TRP channels in auditory transduction and amplification in Drosophila. Neuron 2013, 77: 115–128.

    Article  CAS  PubMed  Google Scholar 

  59. Gopfert MC, Albert JT, Nadrowski B, Kamikouchi A. Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 2006, 9: 999–1000.

    Article  PubMed  CAS  Google Scholar 

  60. Lacey SE, He S, Scheres SH, Carter AP. Cryo-EM of dynein microtubule-binding domains shows how an axonemal dynein distorts the microtubule. eLife 2019, 8: e47145..

  61. Goswami C, Dreger M, Jahnel R, Bogen O, Gillen C, Hucho F. Identification and characterization of a Ca2+ -sensitive interaction of the vanilloid receptor TRPV1 with tubulin. J Neurochem 2004, 91: 1092–1103.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang W, Cheng LE, Kittelmann M, Li J, Petkovic M, Cheng T, et al. Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 2015, 162: 1391–1403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Warren B, Matheson T. The Role of the Mechanotransduction Ion Channel Candidate Nanchung-Inactive in Auditory Transduction in an Insect Ear. J Neurosci 2018, 38: 3741–3752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia-Anoveros J, Corey DP. The molecules of mechanosensation. Annu Rev Neurosci 1997, 20: 567–594.

    Article  CAS  PubMed  Google Scholar 

  65. Gillespie PG, Muller U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 2009, 139: 33–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jia Y, Zhao Y, Kusakizako T, Wang Y, Pan C, Zhang Y, et al. TMC1 and TMC2 proteins are pore-forming subunits of mechanosensitive ion channels. Neuron 2020, 105: 310–321.

    Article  CAS  PubMed  Google Scholar 

  67. Pan B, Geleoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, et al. TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 2013, 79: 504–515.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yuh-Nung Jan (University of California, San Francisco, USA), Yi Rao (Peking University, CIBR and CCMU), and Yongqing Zhang (Institute of Genetics and Developmental Biology, Chinese Academy of Sciences) for fly lines and reagents, and Bowen Deng at the Chinese Institute for Brain Research for technical support. We also thank the Core Facility of Drosophila Resource and Technology (Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences) for fly microinjections. The research was supported by funds from the National Key R&D Program of China Project (2017YFA0103900 and 2016YFA0502800), the National Natural Science Foundation of China (31571083 and 31970931), the Program for Professor of Special Appointment (Eastern Scholar of Shanghai, TP2014008), the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01 and 2018SHZDZX01) and ZJLab, and the Shanghai Rising-Star Program (14QA1400800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Li, S. & Yan, Z. Axonemal Dynein DNAH5 is Required for Sound Sensation in Drosophila Larvae. Neurosci. Bull. 37, 523–534 (2021). https://doi.org/10.1007/s12264-021-00631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00631-w

Keywords

Navigation