Skip to main content
Log in

Neuroligins Differentially Mediate Subtype-Specific Synapse Formation in Pyramidal Neurons and Interneurons

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuroligins (NLs) are postsynaptic cell-adhesion proteins that play important roles in synapse formation and the excitatory-inhibitory balance. They have been associated with autism in both human genetic and animal model studies, and affect synaptic connections and synaptic plasticity in several brain regions. Yet current research mainly focuses on pyramidal neurons, while the function of NLs in interneurons remains to be understood. To explore the functional difference among NLs in the subtype-specific synapse formation of both pyramidal neurons and interneurons, we performed viral-mediated shRNA knockdown of NLs in cultured rat cortical neurons and examined the synapses in the two major types of neurons. Our results showed that in both types of neurons, NL1 and NL3 were involved in excitatory synapse formation, and NL2 in GABAergic synapse formation. Interestingly, NL1 affected GABAergic synapse formation more specifically than NL3, and NL2 affected excitatory synapse density preferentially in pyramidal neurons. In summary, our results demonstrated that different NLs play distinct roles in regulating the development and balance of excitatory and inhibitory synapses in pyramidal neurons and interneurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song JY, Ichtchenko K, Sudhof TC, Brose N. Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci U S A 1999, 96: 1100–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gibson JR, Huber KM, Sudhof TC. Neuroligin-2 deletion selectively decreases inhibitory synaptic transmission originating from fast-spiking but not from somatostatin-positive interneurons. J Neurosci 2009, 29: 13883–13897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Varoqueaux F, Jamain S, Brose N. Neuroligin 2 is exclusively localized to inhibitory synapses. Eur J Cell Biol 2004, 83: 449–456.

    Article  CAS  PubMed  Google Scholar 

  4. Budreck EC, Scheiffele P. Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. Eur J Neurosci 2007, 26: 1738–1748.

    Article  PubMed  Google Scholar 

  5. Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, Schmidt KF, et al. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proc Natl Acad Sci U S A 2011, 108: 3053–3058.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hoon M, Bauer G, Fritschy JM, Moser T, Falkenburger BH, Varoqueaux F. Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. J Neurosci 2009, 29: 8039–8050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poulopoulos A, Aramuni G, Meyer G, Soykan T, Hoon M, Papadopoulos T, et al. Neuroligin 2 drives postsynaptic assembly at perisomatic inhibitory synapses through gephyrin and collybistin. Neuron 2009, 63: 628–642.

    Article  CAS  PubMed  Google Scholar 

  8. Chih B, Engelman H, Scheiffele P. Control of excitatory and inhibitory synapse formation by neuroligins. Science 2005, 307: 1324–1328.

    Article  CAS  PubMed  Google Scholar 

  9. Levinson JN, Chery N, Huang K, Wong TP, Gerrow K, Kang R, et al. Neuroligins mediate excitatory and inhibitory synapse formation: involvement of PSD-95 and neurexin-1beta in neuroligin-induced synaptic specificity. J Biol Chem 2005, 280: 17312–17319.

    Article  CAS  PubMed  Google Scholar 

  10. Prange O, Wong TP, Gerrow K, Wang YT, El-Husseini A. A balance between excitatory and inhibitory synapses is controlled by PSD-95 and neuroligin. Proc Natl Acad Sci U S A 2004, 101: 13915–13920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chubykin AA, Atasoy D, Etherton MR, Brose N, Kavalali ET, Gibson JR, et al. Activity-dependent validation of excitatory versus inhibitory synapses by neuroligin-1 versus neuroligin-2. Neuron 2007, 54: 919–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ko J, Zhang C, Arac D, Boucard AA, Brunger AT, Sudhof TC. Neuroligin-1 performs neurexin-dependent and neurexin-independent functions in synapse validation. EMBO J 2009, 28: 3244–3255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chanda S, Hale WD, Zhang B, Wernig M, Sudhof TC. Unique versus redundant functions of neuroligin genes in shaping excitatory and inhibitory synapse properties. J Neurosci 2017, 37: 6816–6836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Blundell J, Blaiss CA, Etherton MR, Espinosa F, Tabuchi K, Walz C, et al. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J Neurosci 2010, 30: 2115–2129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blundell J, Tabuchi K, Bolliger MF, Blaiss CA, Brose N, Liu X, et al. Increased anxiety-like behavior in mice lacking the inhibitory synapse cell adhesion molecule neuroligin 2. Genes Brain Behav 2009, 8: 114–126.

    Article  CAS  PubMed  Google Scholar 

  16. Baudouin SJ, Gaudias J, Gerharz S, Hatstatt L, Zhou K, Punnakkal P, et al. Shared synaptic pathophysiology in syndromic and nonsyndromic rodent models of autism. Science 2012, 338: 128–132.

    Article  CAS  PubMed  Google Scholar 

  17. Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M, Gottmann K, et al. Neuroligins determine synapse maturation and function. Neuron 2006, 51: 741–754.

    Article  CAS  PubMed  Google Scholar 

  18. Tabuchi K, Blundell J, Etherton MR, Hammer RE, Liu X, Powell CM, et al. A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science 2007, 318: 71–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kwon HB, Kozorovitskiy Y, Oh WJ, Peixoto RT, Akhtar N, Saulnier JL, et al. Neuroligin-1-dependent competition regulates cortical synaptogenesis and synapse number. Nat Neurosci 2012, 15: 1667–1674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhang B, Sudhof TC. Neuroligins are selectively essential for NMDAR signaling in cerebellar stellate interneurons. J Neurosci 2016, 36: 9070–9083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Polepalli JS, Wu H, Goswami D, Halpern CH, Sudhof TC, Malenka RC. Modulation of excitation on parvalbumin interneurons by neuroligin-3 regulates the hippocampal network. Nat Neurosci 2017, 20: 219–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cao M, Xu J, Shen C, Kam C, Huganir RL, Xia J. PICK1-ICA69 heteromeric BAR domain complex regulates synaptic targeting and surface expression of AMPA receptors. J Neurosci 2007, 27: 12945–12956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu J, Xiao N, Xia J. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat Neurosci 2010, 13: 22–24.

    Article  CAS  PubMed  Google Scholar 

  24. Wang M, Li H, Takumi T, Qiu Z, Xu X, Yu X, et al. Distinct defects in spine formation or pruning in two gene duplication mouse models of autism. Neurosci Bull 2017, 33: 143–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tian Y, Zhang ZC, Han J. Drosophila studies on autism spectrum disorders. Neurosci Bull 2017, 33: 737–746.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Foldy C, Malenka RC, Sudhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron 2013, 78: 498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 2004, 119: 1013–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zeidan A, Ziv NE. Neuroligin-1 loss is associated with reduced tenacity of excitatory synapses. PLoS One 2012, 7: e42314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. Neuron 2005, 48: 229–236.

    Article  CAS  PubMed  Google Scholar 

  30. Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 2000, 101: 657–669.

    Article  CAS  PubMed  Google Scholar 

  31. Fu Z, Washbourne P, Ortinski P, Vicini S. Functional excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors. J Neurophysiol 2003, 90: 3950–3957.

    Article  CAS  PubMed  Google Scholar 

  32. Yizhar O, Fenno LE, Prigge M, Schneider F, Davidson TJ, O’Shea DJ, et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 2011, 477: 171–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (31571049 and 81561168022), the National Basic Research Program of China (2015CB910801), Zhejiang Provincial Natural Science Foundation of China (LR19H090001 and LD19H090002), a joint grant from the National Natural Science Foundation of China and the Research Grants Council of Hong Kong, China (8151101104 and N_HKUST625/15) and Fundamental Research Funds for the Central Universities of China. We appreciate the Core Facilities of Zhejiang University School of Medicine for technical support, and Mrs. SS Liu, ZXN Lin and GF Xiao for their help with confocal microscopy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Hong Luo or Junyu Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 5404 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, QQ., Xu, J., Liao, TL. et al. Neuroligins Differentially Mediate Subtype-Specific Synapse Formation in Pyramidal Neurons and Interneurons. Neurosci. Bull. 35, 497–506 (2019). https://doi.org/10.1007/s12264-019-00347-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-019-00347-y

Keywords

Navigation