Skip to main content
Log in

Simultaneous Fermentation of Mixed Sugar by a Newly Isolated Clostridium beijerinckii GSC1

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A new wild type solventogenic Clostridium bacterium, which could produce a large amount of solvent from a mixture of 70% glucose and 30% xylose, was isolated. Based on 16S rRNA gene analysis, this strain was identified as Clostridium beijerinckii. Batch fermentations with this strain (C. beijerinckii GSC1) resulted in the production of 19.65 g/L total solvents (Acetone-Butanol-Ethanol), which is 31% higher than that with the typical wild type strain Clostridium acetobutylicum ATCC 824. This new strain utilized glucose and xylose simultaneously without genetic modification. The selectivity of GSC1 for butanol was 81.8%, which is much higher than that of C. acetobutylicum ATCC 824 (68.7%). Simple genetic modification was performed to obtain a more improved performance. The acid production in batch fermentation by C. beijerinckii GSC1_R1 (gene-modified strain) was reduced to 2.6 g/L from 6.02 g/L. The solvent productivity of GSC1_R1 in continuous fermentation was 3.6 g/L/h. These results indicate that the newly isolated strain is very promising and applicable for the production of biobutanol from second-generation biomass owing to the superior performance of the wild type strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szulczyk, K. R. (2010) Which is a better transportation fuel — butanol or ethanol? Int. J. Energy Environ. 1: 501–512.

    CAS  Google Scholar 

  2. Keis, S., R. Shaheen, and D. T. Jones (2001) Emended descriptions of Clostridium acetobutylicum and Clostridium beijerinckii, and descriptions of Clostridium saccharoperbutylacetonicum sp. nov. and Clostridium saccharobutylicum sp. nov. Int. J. Syst. Evol. Microbiol. 51: 2095–2103.

    Article  CAS  Google Scholar 

  3. Chen, C., C. Sun, and Y. R. Wu (2018) The draft genome sequence of a novel high-efficient butanol-producing bacterium Clostridium diolis strain WST. Curr. Microbiol. 75: 1011–1015.

    Article  CAS  Google Scholar 

  4. Nasser Al-Shorgani, N. K., M. H. M. Isa, W. M. W. Yusoff, M. S. Kalil, and A. A. Hamid (2016) Isolation of a Clostridium acetobutylicum strain and characterization of its fermentation performance on agricultural wastes. Renew. Energy. 86: 459–465.

    Article  Google Scholar 

  5. Dalal, J., M. Das, S. Joy, M. Yama, and J. Rawat (2019) Efficient isopropanol-butanol (IB) fermentation of rice straw hydrolysate by a newly isolated Clostridium beijerinckii strain C-01. Biomass Bioenergy. 127: 105292.

    Article  CAS  Google Scholar 

  6. Li, H. G., F. K. Ofosu, K. T. Li, Q. Y. Gu, Q. Wang, and X. B. Yu (2014) Acetone, butanol, and ethanol production from gelatinized cassava flour by a new isolates with high butanol tolerance. Bioresour. Technol. 172: 276–282.

    Article  CAS  Google Scholar 

  7. Zhang, J., W. Zhu, H. Xu, Y. Li, D. Hua, F. Jin, M. Gao, and X. Zhang (2016) Simultaneous glucose and xylose uptake by an acetone/butanol/ethanol producing laboratory Clostridium beijerinckii strain SE-2. Biotechnol. Lett. 38: 611–617.

    Article  CAS  Google Scholar 

  8. Moon, H. G., Y. S. Jang, C. Cho, J. Lee, R. Binkley, and S. Y. Lee (2016) One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 363: fnw001.

    Article  Google Scholar 

  9. Jang, Y. S., J. Lee, A. Malaviya, D. Y. Seung, J. H. Cho, and S. Y. Lee (2012) Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnol. J. 7: 186–198.

    Article  CAS  Google Scholar 

  10. Sillers, R., A. Chow, B. Tracy, and E. T. Papoutsakis (2008) Metabolic engineering of the non-sporulating, non-solventogenic Clostridium acetobutylicum strain M5 to produce butanol without acetone demonstrate the robustness of the acid-formation pathways and the importance of the electron balance. Metab. Eng. 10: 321–332.

    Article  CAS  Google Scholar 

  11. González-Pajuelo, M., I. Meynial-Salles, F. Mendes, J. C. Andrade, I. Vasconcelos, and P. Soucaille (2005) Metabolic engineering of Clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerol. Metab. Eng. 7: 329–336.

    Article  Google Scholar 

  12. Kumar, M. and K. Gayen (2011) Developments in biobutanol production: New insights. Appl. Energy. 88: 1999–2012.

    Article  CAS  Google Scholar 

  13. Gheshlaghi, R., J. M. Scharer, M. Moo-Young, and C. P. Chou (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol. Adv. 27: 764–781.

    Article  CAS  Google Scholar 

  14. Ezeji, T., N. Qureshi, and H. P. Blaschek (2007) Production of acetone-butanol-ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem. 42: 34–39.

    Article  CAS  Google Scholar 

  15. Nanda, S., D. Golemi-Kotra, J. C. McDermott, A. K. Dalai, I. Gökalp, and J. A. Kozinski (2017) Fermentative production of butanol: Perspectives on synthetic biology. N Biotechnol. 37: 210–221.

    Article  CAS  Google Scholar 

  16. Xue, C., J. B. Zhao, L. J. Chen, F. W. Bai, S. T. Yan, and J. X. Sung (2014) Integrated butanol recovery for an advanced biofuel: current state and prospects. Appl. Microbiol. Biotechnol. 98: 3463–3474.

    Article  CAS  Google Scholar 

  17. Jang, Y. S., A. Malaviya, C. Cho, J. Lee, and S. Y. Lee (2012) Butanol production from renewable biomass by clostridia. Bioresour. Technol. 123: 653–663.

    Article  CAS  Google Scholar 

  18. Lee, S. Y., J. H. Park, S. H. Jang, L. K. Nielsen, J. Kim, and K. S. Jung (2008) Fermentative butanol production by clostridia. Biotechnol. Bioeng. 101: 209–228.

    Article  CAS  Google Scholar 

  19. Heap, J. T., O. J. Pennington, S. T. Cartman, G. P. Carter, and N. P. Minton (2007) The ClosTron: A universal gene knock-out system for the genus Clostridium. J. Microbiol. Methods. 70: 452–464.

    Article  CAS  Google Scholar 

  20. Wiesenborn, D. P., F. B. Rudolph, and E. T. Papoutsakis (1989) Coenzyme A transferase from Clostridium acetobutylicum ATCC 824 and its role in the uptake of acids. Appl. Environ. Microbiol. 55: 323–329.

    Article  CAS  Google Scholar 

  21. Lee, S. H., S. Kim, J. Y. Kim, N. Y. Cheong, and K. H. Kim (2016) Enhanced butanol fermentation using metabolically engineered Clostridium acetobutylicum with ex situ recovery of butanol. Bioresour. Technol. 218: 909–917.

    Article  CAS  Google Scholar 

  22. Lee, S. H., M. H. Eom, S. Kim, M. A. Kwon, J. D. R. Choi, J. Kim, Y. A. Shin, and K. H. Kim (2015) Ex situ product recovery and strain engineering of Clostridium acetobutylicum for enhanced production of butanol. Process Biochem. 50: 1683–1691.

    Article  Google Scholar 

  23. Mermelstein, L. D., N. E. Welker, G. N. Bennett, and E. T. Papoutsakis (1992) Expression of cloned homologous fermentative genes in Clostridium acetobutylicum ATCC 824. Nat. Biotechnol. 10: 190–195.

    Article  CAS  Google Scholar 

  24. Choi, J., Y. S. Jang, J. H. Cho, D. Seung, S. Y. Lee, E. T. Papoutsakis, G. N. Bennett, and H. Song (2013) Characterization and evaluation of corn steep liquid in acetone-butanol-ethanol production by Clostridium acetobutylicum. Biotechnol. Bioprocess Eng. 18: 266–271.

    Article  CAS  Google Scholar 

  25. Nolling, J., G. Breton, M. V. Omelchenko, K. S. Makarova, Q. Zeng, R. Gibson, H. M. Lee, J. Dubois, D. Qiu, J. Hitti, Y. I. Wolf, R. L. Tatusov, F. Sabathe, L. Doucette-Stamm, P. Soucaille, M. J. Daly, G. N. Bennett, E. V. Koonin, and D. R. Smith (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J. Bacteriol. 183: 4823–4838.

    Article  CAS  Google Scholar 

  26. Wang, Y., X. Li, Y. Mao, and H. P. Blaschek (2012) Genome-wide dynamic transcriptional profiling in Clostridium beijerinckii NCIMB 8052 using single-nucleotide resolution RNA-Seq. BMC Genomics. 13: 102.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project (Project No. 2013001580001) is supported by the Ministry of Environment, Republic of Korea as “The Wastes to Energy Technology Development Program”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungwan Han.

Ethics declarations

No ethical approval required.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflicts of Interest

The authors declare no conflict of interest.

Informed Consent

No informed consent required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, YA., Choi, S. & Han, M. Simultaneous Fermentation of Mixed Sugar by a Newly Isolated Clostridium beijerinckii GSC1. Biotechnol Bioproc E 26, 137–144 (2021). https://doi.org/10.1007/s12257-020-0183-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0183-6

Keywords

Navigation