Urolithin A Induces Brown-like Phenotype in 3T3-L1 White Adipocytes via β3-adrenergic Receptor-p38 MAPK Signaling Pathway

Abstract

Recently, pharmacological activation of thermogenesis in brown fat and induction of white fat browning (beiging) have been considered as promising strategies in the development of anti-obesity drugs. During the screening of natural compounds that may stimulate thermogenesis, urolithin A (UroA), which is metabolized from pomegranate ellagitannins by gut microflora, was identified as a potent anti-obesity candidate. In the present study, we elucidated the role of UroA to induce the brown-like phenotype in 3T3-L1 white adipocytes. UroA treatments of up to 50 µM were non-toxic to cells. UroA at 15 µM significantly increased the protein expression levels of brown-fatspecific markers such as UCP1, PRDM16, PGC-1α, C/EBPβ, and PPARα. In addition, it remarkably increased the expression of beige-specific genes, including Cd137, Cidea, Cited1, Tbx1, and Tmen26, in 3T3-L1 white adipocytes and significantly elevated expressions of the brown-fatspecific genes (Ppargc1, Prdm16, and Ucp1) in white adipocytes. Furthermore, UroA treatment of 3T3-L1 white adipocytes cells reduced the expression of key adipogenic transcription factors, whereas enhanced lipolysis and the fat oxidation process. Mechanistic study revealed that UroA treatment induces browning in white adipocytes via activation of β3-AR- and p38 MAPK-dependent signaling pathways. Taken together, UroA has the potential to treat obesity by its capacity to recruit beige fat cells in white adipocyte tissue, thereby contributing to an increase in thermogenesis.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Flegal, K. M., D. Kruszon-Moran, M. D. Carroll, C. D. Fryar, and C. L. Ogden (2016) Trends in obesity among adults in the United States, 2005 to 2014. JAMA. 315: 2284–2291.

    CAS  PubMed  Google Scholar 

  2. 2.

    Jia, W. (2015) Obesity in China: its characteristics, diagnostic criteria, and implications. Front Med. 9: 129–133.

    PubMed  Google Scholar 

  3. 3.

    Wang, S. and J. Ren (2018) Obesity paradox in aging: from prevalence to pathophysiology. Prog. Cardiovasc. Dis. 61: 182–189.

    PubMed  Google Scholar 

  4. 4.

    World Health Organisation. Obesity and overweight (2018) http://www.who.int/mediacentre/factsheets/fs311/en/.

  5. 5.

    Jung, U. J. and M. S. Choi (2014) Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int. J. Mol. Sci. 15: 6184–6223.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kang, J. G. and C. Y. Park (2012) Anti-obesity drugs: A review about their effects and safety. Diabetes Metab. J. 36: 13–25.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Derosa, G. and P. Maffioli (2012) Anti-obesity drugs: a review about their effects and their safety. Expert. Opin. Drug Saf. 11: 459–471.

    CAS  PubMed  Google Scholar 

  8. 8.

    Tan, C. Y., K. Ishikawa, S. Virtue, and A. Vidal-Puig (2011) Brown adipose tissue in the treatment of obesity and diabetes: Are we hot enough? J. Diabetes Investig. 2: 341–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Kaur, K. K., G. Allahbadia, and M. Singh (2018) Advances in BAT physiology for understanding and translating into Pharmacotherapies for obesity and comorbidities. MOJ. Drug Des. Develop. Ther. 2: 166–176.

    Google Scholar 

  10. 10.

    Saito, M. (2013) Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabetes Metab. J. 37: 22–29.

    PubMed  PubMed Central  Google Scholar 

  11. 11.

    Van Marken Lichtenbelt, W. D., J. W. Vanhommerig, N. M. Smulders, J. M. Drossaerts, G. J. Kemerink, N. D. Bouvy, P. Schrauwen, and G. J. Teule (2009) Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360: 1500–1508.

    CAS  PubMed  Google Scholar 

  12. 12.

    Cypess, A. M. and C. R. Kahn (2010) Brown fat as a therapy for obesity and diabetes. Curr. Opin. Endocrinol Diabetes Obes. 17: 143–149.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Wang, W. and P. Seale (2016) Control of brown and beige fat development. Nat. Rev. Mol. Cell. Biol. 17: 691–702.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Karri, S., S. Sharma, K. Hatware, and K. Patil (2019) Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother. 110: 224–238.

    CAS  PubMed  Google Scholar 

  15. 15.

    Bonet, M. L., P. Oliver, and A. Palou (2013) Pharmacological and nutritional agents promoting browning of white adipose tissue. Biochim. Biophys. Acta. 1831: 969–985.

    CAS  PubMed  Google Scholar 

  16. 16.

    Jang, M. H., N. H. Kang, S. Mukherjee, and J. W. Yun (2018) Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes. Biotechnol. Bioprocess Eng. 23: 617–626.

    CAS  Google Scholar 

  17. 17.

    Mukherjee, S., K. R. Aseer, and J. W. Yun (2020) Roles of macrophage colony stimulating factor in white and brown adipocytes. Biotechnol. Bioprocess Eng. 25: 29–38.

    CAS  Google Scholar 

  18. 18.

    Veeresham, C. (2012) Natural products derived from plants as a source of drugs. J. Adv. Pharm. Technol. Res. 3: 200–201.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Mohamed, G. A., S. R. M. Ibrahim, E. S. Elkhayat, and R. S. El Dine (2014) Natural anti-obesity agents. Bull. Fac. Pharm. Cairo Univ. 52: 269–284.

    Google Scholar 

  20. 20.

    Mopuri, R. and M. S. Islam (2017) Medicinal plants and phytochemicals with anti-obesogenic potentials: A review. Biomed. Pharmacother. 89: 1442–1452.

    CAS  PubMed  Google Scholar 

  21. 21.

    Azhar, Y., A. Parmar, C. N. Miller, J. S. Samuels, and S. Rayalam (2016) Phytochemicals as novel agents for the induction of browning in white adipose tissue. Nutr. Metab. (Lond). 13: 89.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Silvester, A. J., K. R. Aseer, and J. W. Yun (2019) Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem. 64: 1–12.

    CAS  PubMed  Google Scholar 

  23. 23.

    Espín, J. C., R. González-Barrio, B. Cerdá, C. López-Bote, A. I. Rey, and F. A. Tomás-Barberán (2007) Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. J. Agric. Food Chem. 55: 10476–10485.

    PubMed  Google Scholar 

  24. 24.

    Gimenez-Bastida, J. A., A. Gonzalez-Sarrias, M. Larrosa, F. Tomas-Barberan, J. C. Espin, and M. T. Garcia-Conesa (2012) Ellagitannin metabolites, urolithin A glucuronide and its aglycone urolithin A, ameliorate TNF-α-induced inflammation and associated molecular markers in human aortic endothelial cells. Mol. Nutr. Food Res. 56: 784–796.

    CAS  PubMed  Google Scholar 

  25. 25.

    Piwowarski, J. P., S. Granica, M. Zwierzyńska, J. Stefańska, P. Schopohl, M. F. Melzig, and A. K. Kiss (2014) Role of human gut microbiota metabolism in the anti-inflammatory effect of traditionally used ellagitannin-rich plant materials. J. Ethnopharmacol. 155: 801–809.

    CAS  PubMed  Google Scholar 

  26. 26.

    Heber, D. (2008) Multitargeted therapy of cancer by ellagitannins. Cancer Lett. 269: 262–268.

    CAS  PubMed  Google Scholar 

  27. 27.

    Li, Z., S. M. Henning, R. P. Lee, Q. Y. Lu, P. H. Summanen, G. Thames, K. Corbett, J. Downes, C. H. Tseng, S. M. Finegold, and D. Heber (2015) Pomegranate extract induces ellagitannin metabolite formation and changes stool microbiota in healthy volunteers. Food Funct. 6: 2487–2495.

    CAS  PubMed  Google Scholar 

  28. 28.

    Puupponen-Pimiä, R., T. Seppänen-Laakso, M. Kankainen, J. Maukonen, R. Törrönen, M. Kolehmainen, T. Leppänen, E. Moilanen, L. Nohynek, A. M. Aura, K. Poutanen, F. A. Tómas-Barberán, J. C. Espín, and K. M. Oksman-Caldentey (2013) Effects of ellagitannin-rich berries on blood lipids, gut microbiota, and urolithin production in human subjects with symptoms of metabolic syndrome. Mol. Nutr. Food Res. 57: 2258–2263.

    PubMed  Google Scholar 

  29. 29.

    Tomás-Barberán, F. A., A. González-Sarrías, R. García-Villalba, M. A. Núñez-Sánchez, M. V. Selma, M. T. García-Conesa, and J. C. Espín (2017) Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 61: 1500901.

    Google Scholar 

  30. 30.

    Espin, J. C., M. Larrosa, M. T. Garcia-Conesa, and F. Tomas-Barberan (2013) Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: the evidence so far. Evid. Based Complement Alterna. Med. 2013: 270418.

    Google Scholar 

  31. 31.

    Selma, M. V., A. González-Sarrías, J. Salas-Salvadó, C. Andrés-Lacueva, C. Alasalvar, A. Örem, F. A. Tomás-Barberán, and J. C. Espín (2018) The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clin. Nutr. 37: 897–905.

    CAS  PubMed  Google Scholar 

  32. 32.

    Ishimoto, H., M. Shibata, Y. Myojin, H. Ito, Y. Sugimoto, A. Tai, and T. Hatano (2011) In vivo anti-inflammatory and antioxidant properties of ellagitannin metabolite urolithin A. Bioorg. Med. Chem. Lett. 21: 5901–5904.

    CAS  PubMed  Google Scholar 

  33. 33.

    Cerda, B., P. Periago, J. C. Espín, and F. A. Tomas-Barberan (2005) Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. J. Agric. Food Chem. 53: 5571–5576.

    CAS  PubMed  Google Scholar 

  34. 34.

    Singh, R., S. Chandrashekharappa, S. R. Bodduluri, B. V. Baby, B. Hegde, N. G. Kotla, A. A. Hiwale, T. Saiyed, P. Patel, M. Vijay-Kumar, M. G. Langille, G. M. Douglas, X. Cheng, E. C. Rouchka, S. J. Waigel, G. W. Dryden, H. Alatassi, H. G. Zhang, B. Haribabu, P. K. Vemula, and V. R. Jala (2019) Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat. Commun. 10: 89.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Kang, I., Y. Kim, F. A. Tomas-Barberan, J. C. Espin, and S. Chung (2016) Urolithin A, C, and D, but not iso-urolithin A and urolithin B, attenuate triglyceride accumulation in human cultures of adipocytes and hepatocytes. Mol. Nutr. Food Res. 60: 1129–1138.

    CAS  PubMed  Google Scholar 

  36. 36.

    Les, F., J. M. Arbones-Mainar, M. S. Valero, and V. Lopez (2018) Pomegranate polyphenols and urolithin A inhibit α-glucosidase, dipeptidyl peptidase-4, lipase, triglyceride accumulation and adipogenesis related genes in 3T3-L1 adipocyte-like cells. J. Ethnopharmacol. 220: 67–74.

    CAS  PubMed  Google Scholar 

  37. 37.

    Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65: 55–63.

    CAS  PubMed  Google Scholar 

  38. 38.

    Kang, B., C. Y. Kim, J. Hwang, K. Jo, S. Kim, H. J. Suh, and H. S. Choi (2019) Punicalagin, a pomegranate-derived ellagitannin, suppresses obesity and obesity-induced inflammatory responses via the Nrf2/Keap1 signaling pathway. Mol. Nutr. Food Res. 63: e1900574.

    PubMed  Google Scholar 

  39. 39.

    Wang, L., Y. Wei, C. Ning, M. Zhang, P. Fan, D. Lei, J. Du, M. Gale, Y. Ma, and Y. Yang (2019) Ellagic acid promotes browning of white adipose tissues in high-fat diet-induced obesity in rats through suppressing white adipocyte maintaining genes. Endocr. J. 66: 923–936.

    CAS  PubMed  Google Scholar 

  40. 40.

    Han, Q. A., C. Yan, L. Wang, G. Li, Y. Xu, and X. Xia (2016) Urolithin A attenuates ox-LDL-induced endothelial dysfunction partly by modulating microRNA-27 and ERK/PPAR-γ pathway. Mol. Nutr. Food Res. 60: 1933–1943.

    CAS  PubMed  Google Scholar 

  41. 41.

    Seale, P., S. Kajimura, W. Yang, S. Chin, L. M. Rohas, M. Uldry, G. Tavernier, D. Langin, and B. M. Spiegelman (2007) Trans-criptional control of brown fat determination by PRDM16. Cell Metab. 6: 38–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Sharp, L. Z., K. Shinoda, H. Ohno, D. W. Scheel, E. Tomoda, L. Ruiz, H. Hu, L. Wang, Z. Pavlova, V. Gilsanz, and S. Kajimura (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 7: e49452.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Tiraby, C., G. Tavernier, C. Lefort, D. Larrouy, F. Bouillaud, D. Ricquier, and D. Langin (2003) Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem. 278: 33370–33376.

    CAS  PubMed  Google Scholar 

  44. 44.

    Vega, R. B., J. M. Huss, and D. P. Kelly (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor α in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol. Cell. Biol. 20: 1868–1876.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Toney, A. M., R. Fan, Y. Xian, V. Chaidez, A. E. Ramer-Tait, and S. Chung (2019) Urolithin A, a gut metabolite, improves insulin sensitivity through augmentation of mitochondrial function and biogenesis. Obesity. 27: 612–620.

    CAS  PubMed  Google Scholar 

  46. 46.

    Farmer, S. R. (2006) Transcriptional control of adipocyte formation. Cell Metab. 4: 263–273.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Tung, Y. C., P. H. Hsieh, M. H. Pan, and C. T. Ho (2017) Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J. Food Drug Anal. 25: 100–110.

    CAS  PubMed  Google Scholar 

  48. 48.

    Hardie, D. G., F. A. Ross, and S. A. Hawley (2012) AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13: 251–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Viollet, B., S. Horman, J. Leclerc, L. Lantier, M. Foretz, M. Billaud, S. Giri, and F. Andreelli (2010) AMPK inhibition in health and disease. Crit. Rev. Biochem. Mol. Biol. 45: 276–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Duncan, R. E., M. Ahmadian, K. Jaworski, E. Sarkadi-Nagy, and H. S. Sul (2007) Regulation of lipolysis in adipocytes. Annu. Rev. Nutr. 27: 79–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Nielsen, T. S., N. Jessen, J. O. L. Jørgensen, N. Møller, and S. Lund (2014) Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J. Mol. Endocrinol. 52: R199–R222.

    CAS  PubMed  Google Scholar 

  52. 52.

    Hondares, E., R. Iglesias, A. Giralt, F. J. Gonzalez, M. Giralt, T. Mampel, and F. Villarroya (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286: 12983–12990.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Cao, W., K. W. Daniel, J. Robidoux, P. Puigserver, A. V. Medvedev, X. Bai, L. M. Floering, B. M. Spiegelman, and S. Collins (2004) p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell Biol. 24: 3057–3067.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Whittle, A. J., S. Carobbio, L. Martins, M. Slawik, E. Hondares, M. J. Vázquez, D. Morgan, R. I. Csikasz, R. Gallego, S. Rodriguez-Cuenca, M. Dale, S. Virtue, F. Villarroya, B. Cannon, K. Rahmouni, M. López, and A. Vidal-Puig (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell. 149: 871–885.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Choi, J. H., S. W. Kim, R. Yu, and J. W. Yun (2017) Monoterpene phenolic compound thymol promotes browning of 3T3-L1 adipocytes. Eur. J. Nutr. 56: 2329–2341.

    CAS  PubMed  Google Scholar 

  56. 56.

    Cao, W., A. V. Medvedev, K. W. Daniel, and S. Collines (2001) β-adrenergic activation of p38 MAPK kinase in adipocytes: cAMP induction of the uncoupling protein 1 (UCP1) gene requires p38 MAP kinase. J. Biol. Chem. 276: 27077–27082.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by Daegu University Research Grant 2019.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

Conflicts of Interest The authors declared no conflicts of interest.

Ethical Statement This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Manigandan, S., Yun, J.W. Urolithin A Induces Brown-like Phenotype in 3T3-L1 White Adipocytes via β3-adrenergic Receptor-p38 MAPK Signaling Pathway. Biotechnol Bioproc E 25, 345–355 (2020). https://doi.org/10.1007/s12257-020-0149-8

Download citation

Keywords

  • fat browning
  • thermogenesis
  • 3T3-L1 white adipocytes
  • UCP1
  • urolithin A