Microfluidic Single-cell Trapping and Cultivation for the Analysis of Host-viral Interactions


The isolation of single cells and their further cultivation in confined chambers are essential to the collection of statistically reliable temporal information in cell-based biological experiments. In this work, we present a hydrodynamic single-cell trapping and culturing platform that facilitates biological analysis and experimentation of virus infection into host cells. To find the optimum design of the cell trap at the microscale, we evaluated hook traps with different widths and trap intervals to obtain a high trapping efficiency of a single cell. The proposed design leverages the stochastic position of the cells as they flow into the structured microfluidic channels, where hundreds of single cells are then arrayed in nanoliter chambers for simultaneous cell-specific data collection. Optimum design is used to devise and implement a hydrodynamic cell-trapping mechanism that is minimally detrimental to the cell viability and retains a high trapping efficiency (90%), with the capability of reaching high fill factors (90%) in short loading times (10 min) in a 450-trap device. Finally, we perform an analysis of host-viral interactions under the treatment of a drug concentration gradient as a proof of concept.

This is a preview of subscription content, access via your institution.


  1. 1.

    Martin, R. M., H. Leonhardt, and M. C. Cardoso (2005) DNA labeling in living cells. Cytometry A. 67: 45–52.

    Article  Google Scholar 

  2. 2.

    Wlodkowic, D., J. Skommer, and Z. Darzynkiewicz (2008) SYTO probes in the cytometry of tumor cell death. Cytometry A. 73: 496–507.

    Article  Google Scholar 

  3. 3.

    Andersson, H. and A. van den Berg (2004) Microtechnologies and nanotechnologies for single-cell analysis. Curr. Opin. Biotechnol. 15: 44–49.

    CAS  Article  Google Scholar 

  4. 4.

    Beebe, D. J., G. A. Mensing, and G. M. Walker (2002) Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 4: 261–286.

    CAS  Article  Google Scholar 

  5. 5.

    El-Ali, J., P. K. Sorger, and K. F. Jensen (2006) Cells on chips. Nature. 442: 403–411.

    CAS  Article  Google Scholar 

  6. 6.

    Hong, J. W. and S. R. Quake (2003) Integrated nanoliter systems. Nat. Biotechnol. 21: 1179–1183.

    CAS  Article  Google Scholar 

  7. 7.

    Walker, G. M. and D. J. Beebe (2002) A passive pumping method for microfluidic devices. Lab. Chip. 2: 131–134.

    CAS  Article  Google Scholar 

  8. 8.

    Hosseini, F. and M. Rahimi (2020) Experimental study and artificial intelligence modeling of liquid-liquid mass transfer in multiple-ring microchannels. Korean J. Chem. Eng. 37: 411–422.

    CAS  Article  Google Scholar 

  9. 9.

    Di Carlo, D., L. Y. Wu, and L. P. Lee (2006) Dynamic single cell culture array. Lab. Chip. 6: 1445–1449.

    CAS  Article  Google Scholar 

  10. 10.

    Lindstrom, S. and H. Andersson-Svahn (2010) Overview of single-cell analyses: microdevices and applications. Lab. Chip. 10: 3363–3372.

    Article  Google Scholar 

  11. 11.

    Harmon, M. W. (1982) Diagnostic virology: illustrated by light and electron microscopy. G. D. Hsiung. Q Rev. Biol. 58: 600.

    Article  Google Scholar 

  12. 12.

    Dusseiller, M. R., D. Schlaepfer, M. Koch, R. Kroschewski, and M. Textor (2005) An inverted microcontact printing method on topographically structured polystyrene chips for arrayed micro-3-D culturing of single cells. Biomaterials. 26: 5917–5925.

    CAS  Article  Google Scholar 

  13. 13.

    Khademhosseini, A., J. Yeh, S. Jon, G. Eng, K. Y. Suh, J. A. Burdick, and R. Langer (2004) Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab. Chip. 4: 425–430.

    CAS  Article  Google Scholar 

  14. 14.

    Kobel, S., M. Limacher, S. Gobaa, T. Laroche, and M. P. Lutolf (2009) Micropatterning of hydrogels by soft embossing. Langmuir. 25: 8774–8779.

    CAS  Article  Google Scholar 

  15. 15.

    Ogunniyi, A. O., C. M. Story, E. Papa, E. Guillen, and J. C. Love (2009) Screening individual hybridomas by microengraving to discover monoclonal antibodies. Nat. Protoc. 4: 767–782.

    CAS  Article  Google Scholar 

  16. 16.

    Johann, R. M. (2006) Cell trapping in microfluidic chips. Anal. Bioanal. Chem. 385: 408–412.

    CAS  Article  Google Scholar 

  17. 17.

    Voldman, J. (2006) Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8: 425–454.

    CAS  Article  Google Scholar 

  18. 18.

    Huang, W. H., W. Cheng, Z. Zhang, D. W. Pang, Z. L. Wang, J. K. Cheng, and D. F. Cui (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal. Chem. 76: 483–488.

    CAS  Article  Google Scholar 

  19. 19.

    Mittal, N., A. Rosenthal, and J. Voldman (2007) nDEP microwells for single-cell patterning in physiological media. Lab. Chip. 7: 1146–1153.

    CAS  Article  Google Scholar 

  20. 20.

    Seger-Sauli, U., M. Panayiotou, S. Schnydrig, M. Jordan, and P. Renaud (2005) Temperature measurements in microfluidic systems: heat dissipation of negative dielectrophoresis barriers. Electrophoresis. 26: 2239–2246.

    CAS  Article  Google Scholar 

  21. 21.

    Park, J. W., H. S. Shin, H. J. Kim, and N. L. Jeon (2014) Concentration gradient generation and control. In: D. Li (ed.). Encyclopedia of Microfluidics and Nanofluidics. Springer, Boston, MA, USA.

    Google Scholar 

  22. 22.

    Zhang, K., C. K. Chou, X. Xia, M. C. Hung, and L. Qin (2014) Block-Cell-Printing for live single-cell printing. Proc. Natl. Acad. Sci. U S A. 111: 2948–2953.

    CAS  Article  Google Scholar 

  23. 23.

    Shi, W. W., J. Qin, N. Ye, and B. Lin (2008) Droplet-based microfluidic system for individual Caenorhabditis elegans assay. Lab. Chip. 8: 1432–1435.

    CAS  Article  Google Scholar 

  24. 24.

    Skelley, A. M., O. Kirak, H. Suh, R. Jaenisch, and J. Voldman (2009) Microfluidic control of cell pairing and fusion. Nat. Methods. 6: 147–152.

    CAS  Article  Google Scholar 

  25. 25.

    Chen, P., S. Yan, J. Wang, Y. Guo, Y. Dong, X. Feng, X. Zeng, Y. Li, W. Du, and B. F. Liu (2019) Dynamic microfluidic cytometry for single-cell cellomics: High-throughput probing single-cell-resolution signaling. Anal. Chem. 91: 1619–1626.

    CAS  Article  Google Scholar 

  26. 26.

    Ohiri, K. A., S. T. Kelly, J. D. Motschman, K. H. Lin, K. C. Wood, and B. B. Yellen (2018) An acoustofluidic trap and transfer approach for organizing a high density single cell array. Lab. Chip. 18: 2124–2133.

    CAS  Article  Google Scholar 

  27. 27.

    Carlo, D. D. and L. P. Lee (2006) Dynamic single-cell analysis for quantitative biology. Anal. Chem. 78: 7918–7925.

    Article  Google Scholar 

  28. 28.

    Wang, Y., X. Tang, X. Feng, C. Liu, P. Chen, D. Chen, and B. F. Liu (2015) A microfluidic digital single-cell assay for the evaluation of anticancer drugs. Anal. Bioanal. Chem. 407: 1139–1148.

    CAS  Article  Google Scholar 

  29. 29.

    Ahmed, T., T. S. Shimizu, and R. Stocker (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano. Lett. 10: 3379–3385.

    CAS  Article  Google Scholar 

  30. 30.

    Deen, W. M. (1998) Analysis of Transport Phenomena. 1st ed., p. 433. Oxford University Press, New York, NY, USA.

    Google Scholar 

  31. 31.

    Steuerman, Y., M. Cohen, N. Peshes-Yaloz, L. Valadarsky, O. Cohn, E. David, A. Frishberg, L. Mayo, E. Bacharach, I. Amit, and I. Gat-Viks (2018) Dissection of influenza infection in vivo by single-cell RNA sequencing. Cell Syst. 6: 679–691.e4.

    CAS  Article  Google Scholar 

  32. 32.

    Russell, A. B., C. Trapnell, and J. D. Bloom (2018) Extreme heterogeneity of influenza virus infection in single cells. Elife. 7: e32303.

    Article  Google Scholar 

  33. 33.

    Yang, J. M., K. R. Kim, and C. S. Kim (2018) Biosensor for rapid and sensitive detection of influenza virus. Biotechnol. Bioprocess Eng. 23: 371–382.

    CAS  Article  Google Scholar 

  34. 34.

    Hong, G. P., J. H. Park, H. H. Lee, K. O. Jang, D. K. Chung, W. Kim, and I. S. Chung (2015) Production of influenza virus-like particles from stably transfected Trichoplusia ni BT1 TN-5B1-4 cells. Biotechnol. Bioprocess Eng. 20: 506–514.

    CAS  Article  Google Scholar 

  35. 35.

    Hwang, C. H., S. G. Jeong, H. K. Park, C. S. Lee, and Y. G. Kim (2016) Paper-based neuraminidase assay sensor for detection of influenza viruses. Korean Chem. Eng. Res. 54: 380–386.

    CAS  Article  Google Scholar 

  36. 36.

    Hwang, B. H., H. H. Shin, and H. J. Cha (2017) Optimization of DNA microarray biosensors enables rapid and sensitive detection. Biotechnol. Bioprocess Eng. 22: 469–473.

    CAS  Article  Google Scholar 

  37. 37.

    Hong, W., S. G. Jeong, G. Shim, D. Y. Kim, S. P. Pack, and C. S. Lee (2018) Improvement in the reproducibility of a paper-based analytical device (PAD) using stable covalent binding between proteins and cellulose paper. Biotechnol. Bioprocess Eng. 23: 686–692.

    CAS  Article  Google Scholar 

  38. 38.

    Bae, J. E. and I. S. Kim (2010) Multiplex PCR for rapid detection of minute virus of mice, bovine parvovirus, and bovine herpesvirus during the manufacture of cell culture-derived biopharmaceuticals. Biotechnol. Bioprocess Eng. 15: 1031–1037.

    CAS  Article  Google Scholar 

  39. 39.

    Lee, C. S., S. H. Lee, Y. G. Kim, M. K. Oh, T. S. Hwang, Y. W. Rhee, H. M. Song, B. Y. Kim, Y. K. Kim, and B. G. Kim (2006) Fabrication of disposable protein chip for simultaneous sample detection. Biotechnol. Bioprocess Eng. 11: 455.

    CAS  Article  Google Scholar 

Download references


This research was supported by Chungnam National University research fund.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information



Corresponding author

Correspondence to Reya Ganguly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganguly, R., Lee, B., Kang, S. et al. Microfluidic Single-cell Trapping and Cultivation for the Analysis of Host-viral Interactions. Biotechnol Bioproc E (2021). https://doi.org/10.1007/s12257-020-0143-1

Download citation


  • single-cell analysis
  • single-cell array
  • hydrodynamic trapping
  • linear drug gradient
  • host-viral interaction